#lang racket
(require "../frequency-response.rkt"
"../filter.rkt"
"../filter-typed.rkt"
racket/flonum
rackunit
plot)
(define (poly1 z)
(/ 1 (- 1 (* 0.95 (expt z -100)))))
(printf "100-pole comb filter, 0 up to Nyquist:\n")
(response-plot poly1
0.0 22050.0)
(printf "100-pole comb filter, 10K up to 11K:\n")
(response-plot poly1
10000 11000)
(printf "a single zero at 1:\n")
(response-plot (lambda (z) (- 1 (expt z -1))) 0 22050)
(printf "a single zero at 1:\n")
(response-plot (poles&zeros->poly '() '(1)) 0 22050)
(printf "one pole, two zeros:\n")
(response-plot (lambda (z)
(let ([a -0.28]
[b 0.57])
(/ (- 1 (expt z -2))
1
(+ 1
(* -2 a (expt z -1))
(* (+ (* a a) (* b b)) (expt z -2))))))
0
22050)
(printf "one pole, two zeros:\n")
(response-plot (poles&zeros->poly '(-0.28+0.57i -0.28-0.57i) '(1 -1))
0
22050)
(printf "poles on a vertical line, zeros at i and -i:\n")
(response-plot (poles&zeros->poly '(0.5 0.5+0.5i 0.5-0.5i) '(0+i 0-i))
0
22050)
(printf "I think this is a set of chebyshev coefficients...:\n")
(response-plot (coefficient-sets->poly
'(1.0 0.0 0.0 0.0 0.0 0.0)
'(1.0 -3.826392 5.516636 -3.5511127 0.861025))
0
22050)
(define (flvector->list flv)
(for/list ([v (in-flvector flv)]) v))
(lpf-coefficients 0.1)
(lpf-coefficients 0.01)
(response-plot
(coefficient-sets->poly
'(1 4 6 4 1)
'(1 -3.932065224332497 5.808146644839259 -3.8196712238297166 0.9436069610061315))
0 22050)
(lpf-response-plot 0.1 0 22050)
(lpf-response-plot 0.01 0 22050)
(let ()
(define-values (f i g) (lpf-sig 0.5))
(printf "fir terms: ~s\n" (flvector->list f))
(printf "iir terms: ~s\n" (flvector->list i))
(printf "gain: ~s\n" g)
(response-plot
(coefficient-sets->poly
(map (lambda (x) (* x g)) '(1 4 6 4 1))
(cons 1.0 (map (lambda (x) (- x ))(flvector->list i))))
0
22050))
(define reference-s-poles-500
(list
-0.0099444612+0.0700835358i
-0.0240080532+0.0290295510i
-0.0240080532-0.0290295510i
-0.0099444612-0.0700835358i)
)
(define reference-s-poles-1000
(list
-0.0199142092+0.1403452799i
-0.0480771539+0.0581329184i
-0.0480771539-0.0581329184i
-0.0199142092-0.1403452799i
)
)
(define reference-s-poles-11025
(list
-0.2790719918+1.9667583290i
-0.6737393875+0.8146579738i
-0.6737393875-0.8146579738i
-0.2790719918-1.9667583290i
))
(define reference-s-poles-1500
(list
-0.0299347885+0.2109652578i
-0.0722689725+0.0873846710i
-0.0722689725-0.0873846710i
-0.0299347885-0.2109652578i))
(define reference-s-poles-1000-bigripple
(list
-0.0087239785+0.1335251798i
-0.0210615472+0.0553079404i
-0.0210615472-0.0553079404i
-0.0087239785-0.1335251798i
))
(define (cplx->xy p)
(vector (real-part p) (imag-part p)))
(plot
(mix
(points
(map (lambda (cplx)
(vector (real-part cplx) (imag-part cplx)))
reference-s-poles-500))
(points
(map (lambda (cplx)
(vector (real-part cplx) (imag-part cplx)))
reference-s-poles-1000))
(points
(map (lambda (cplx)
(vector (real-part cplx) (imag-part cplx)))
reference-s-poles-1500))
(points
(map (lambda (cplx)
(vector (real-part cplx) (imag-part cplx)))
reference-s-poles-11025)
#:color "blue")
(points
(map (lambda (cplx)
(define multiplied (* 11.025 1.3 0.1425 cplx))
(vector (real-part multiplied) (imag-part multiplied)))
chebyshev-s-poles)
#:color "red")
)
#:x-min -3
#:x-max 3
#:y-min -3
#:y-max 3)
(define reference-z-poles-1000
(map s-space->z-space reference-s-poles-1000))
(define reference-z-poles-11025
(map s-space->z-space reference-s-poles-11025))
(define reference-z-poles-direct-1000
(list
0.9707680768+0.1369305667i
0.9514791950+0.0553910679i
0.9514791950-0.0553910679i
0.9707680768-0.1369305667i
))
(define reference-z-poles-direct-11025
(list
0.0059565954+0.8681048776i
0.3689458180+0.4171022170i
0.3689458180-0.4171022170i
0.0059565954-0.8681048776i
))
(plot
(mix
(points
(map cplx->xy reference-z-poles-direct-1000))
(points
(map cplx->xy reference-z-poles-1000)
#:color "red")
(parametric
(lambda (t)
(vector (cos t) (sin t)))
0
(* 2 pi)))
#:x-min -1
#:x-max 1
#:y-min -1
#:y-max 1
)
(lpf-response-plot 0.8 0 22050 #:db #f)
(define coeff (roots->coefficients reference-z-poles-11025))
(define fir-terms (map (lambda (x) (/ x 16.0))(list 1.0 4.0 6.0 4.0 1.0)))
(define iir-terms coeff)
(define fun
(coefficient-sets->poly
fir-terms
iir-terms))
(response-plot fun 0 22050)
(plot (function
(lambda (omega)
(* 2 (tan (/ omega 2)))))
#:x-min (- pi)
#:x-max pi
#:y-max 50
#:y-min -50)