tests/older-tests/benchmarks/graphs.rkt
#lang s-exp "../../lang/base.rkt"

(require "run-benchmark.rkt")
(provide graphs-benchmark)


; Modified 2 March 1997 by Will Clinger to add graphs-benchmark
; and to expand the four macros below.
; Modified 11 June 1997 by Will Clinger to eliminate assertions
; and to replace a use of "recur" with a named let.
;
; Performance note: (graphs-benchmark 7) allocates
;   34509143 pairs
;     389625 vectors with 2551590 elements
;   56653504 closures (not counting top level and known procedures)

(define (graphs-benchmark . rest)
  (let ((N (if (null? rest) 7 (car rest))))
    (run-benchmark (string-append "graphs" (number->string N))
                   (lambda ()
                     (fold-over-rdg N
                                    2 
                                    cons
                                    '())))))

; End of new code.

;;; ==== std.ss ====

; (define-syntax assert
;     (syntax-rules ()
; 	((assert test info-rest ...)
; 	    #F)))
;
; (define-syntax deny
;     (syntax-rules ()
; 	((deny test info-rest ...)
; 	    #F)))
;
; (define-syntax when
;     (syntax-rules ()
; 	((when test e-first e-rest ...)
; 	    (if test
; 		(begin e-first
; 		    e-rest ...)))))
;
; (define-syntax unless
;     (syntax-rules ()
; 	((unless test e-first e-rest ...)
; 	    (if (not test)
; 		(begin e-first
; 		    e-rest ...)))))

(define assert
  (lambda (test . info)
    #f))

;;; ==== util.ss ====


; Fold over list elements, associating to the left.
(define fold
    (lambda (lst folder state)
	'(assert (list? lst)
	    lst)
	'(assert (procedure? folder)
	    folder)
	(do ((lst lst
		    (cdr lst))
		(state state
		    (folder (car lst)
			state)))
	    ((null? lst)
		state))))

; Given the size of a vector and a procedure which
; sends indicies to desired vector elements, create
; and return the vector.
(define proc->vector
  (lambda (size f)
    '(assert (and (integer? size)
                 (exact? size)
                 (>= size 0))
      size)
    '(assert (procedure? f)
      f)
    (if (zero? size)
        (vector)
        (let ((x (make-vector size (f 0))))
          (let loop ((i 1))
            (when (< i size) (begin               ; [wdc - was when]
              (vector-set! x i (f i))
              (loop (+ i 1)))))
          x))))

(define vector-fold
    (lambda (vec folder state)
	'(assert (vector? vec)
	    vec)
	'(assert (procedure? folder)
	    folder)
	(let ((len
		    (vector-length vec)))
	    (do ((i 0
			(+ i 1))
		    (state state
			(folder (vector-ref vec i)
			    state)))
		((= i len)
		    state)))))

(define vector-map
    (lambda (vec proc)
	(proc->vector (vector-length vec)
	    (lambda (i)
		(proc (vector-ref vec i))))))

; Given limit, return the list 0, 1, ..., limit-1.
(define giota
    (lambda (limit)
	'(assert (and (integer? limit)
		(exact? limit)
		(>= limit 0))
	    limit)
	(let -*-
	    ((limit
		    limit)
		(res
		    '()))
	    (if (zero? limit)
		res
		(let ((limit
			    (- limit 1)))
		    (-*- limit
			(cons limit res)))))))

; Fold over the integers [0, limit).
(define gnatural-fold
    (lambda (limit folder state)
	'(assert (and (integer? limit)
		(exact? limit)
		(>= limit 0))
	    limit)
	'(assert (procedure? folder)
	    folder)
	(do ((i 0
		    (+ i 1))
		(state state
		    (folder i state)))
	    ((= i limit)
		state))))

; Iterate over the integers [0, limit).
(define gnatural-for-each
    (lambda (limit proc!)
	'(assert (and (integer? limit)
		(exact? limit)
		(>= limit 0))
	    limit)
	'(assert (procedure? proc!)
	    proc!)
	(do ((i 0
		    (+ i 1)))
	    ((= i limit))
	    (proc! i))))

(define natural-for-all?
    (lambda (limit ok?)
	'(assert (and (integer? limit)
		(exact? limit)
		(>= limit 0))
	    limit)
	'(assert (procedure? ok?)
	    ok?)
	(let -*-
	    ((i 0))
	    (or (= i limit)
		(and (ok? i)
		    (-*- (+ i 1)))))))

(define natural-there-exists?
    (lambda (limit ok?)
	'(assert (and (integer? limit)
		(exact? limit)
		(>= limit 0))
	    limit)
	'(assert (procedure? ok?)
	    ok?)
	(let -*-
	    ((i 0))
	    (and (not (= i limit))
		(or (ok? i)
		    (-*- (+ i 1)))))))

(define there-exists?
    (lambda (lst ok?)
	'(assert (list? lst)
	    lst)
	'(assert (procedure? ok?)
	    ok?)
	(let -*-
	    ((lst lst))
	    (and (not (null? lst))
		(or (ok? (car lst))
		    (-*- (cdr lst)))))))


;;; ==== ptfold.ss ====


; Fold over the tree of permutations of a universe.
; Each branch (from the root) is a permutation of universe.
; Each node at depth d corresponds to all permutations which pick the
; elements spelled out on the branch from the root to that node as
; the first d elements.
; Their are two components to the state:
;	The b-state is only a function of the branch from the root.
;	The t-state is a function of all nodes seen so far.
; At each node, b-folder is called via
;	(b-folder elem b-state t-state deeper accross)
; where elem is the next element of the universe picked.
; If b-folder can determine the result of the total tree fold at this stage,
; it should simply return the result.
; If b-folder can determine the result of folding over the sub-tree
; rooted at the resulting node, it should call accross via
;	(accross new-t-state)
; where new-t-state is that result.
; Otherwise, b-folder should call deeper via
;	(deeper new-b-state new-t-state)
; where new-b-state is the b-state for the new node and new-t-state is
; the new folded t-state.
; At the leaves of the tree, t-folder is called via
;	(t-folder b-state t-state accross)
; If t-folder can determine the result of the total tree fold at this stage,
; it should simply return that result.
; If not, it should call accross via
;	(accross new-t-state)
; Note, fold-over-perm-tree always calls b-folder in depth-first order.
; I.e., when b-folder is called at depth d, the branch leading to that
; node is the most recent calls to b-folder at all the depths less than d.
; This is a gross efficiency hack so that b-folder can use mutation to
; keep the current branch.
(define fold-over-perm-tree
    (lambda (universe b-folder b-state t-folder t-state)
	'(assert (list? universe)
	    universe)
	'(assert (procedure? b-folder)
	    b-folder)
	'(assert (procedure? t-folder)
	    t-folder)
	(let -*-
	    ((universe
		    universe)
		(b-state
		    b-state)
		(t-state
		    t-state)
		(accross
		    (lambda (final-t-state)
			final-t-state)))
	    (if (null? universe)
		(t-folder b-state t-state accross)
		(let -**-
		    ((in
			    universe)
			(out
			    '())
			(t-state
			    t-state))
		    (let* ((first
				(car in))
			    (rest
				(cdr in))
			    (accross
				(if (null? rest)
				    accross
				    (lambda (new-t-state)
					(-**- rest
					    (cons first out)
					    new-t-state)))))
			(b-folder first
			    b-state
			    t-state
			    (lambda (new-b-state new-t-state)
				(-*- (fold out cons rest)
				    new-b-state
				    new-t-state
				    accross))
			    accross)))))))


;;; ==== minimal.ss ====


; A directed graph is stored as a connection matrix (vector-of-vectors)
; where the first index is the `from' vertex and the second is the `to'
; vertex.  Each entry is a bool indicating if the edge exists.
; The diagonal of the matrix is never examined.
; Make-minimal? returns a procedure which tests if a labelling
; of the verticies is such that the matrix is minimal.
; If it is, then the procedure returns the result of folding over
; the elements of the automoriphism group.  If not, it returns #F.
; The folding is done by calling folder via
;	(folder perm state accross)
; If the folder wants to continue, it should call accross via
;	(accross new-state)
; If it just wants the entire minimal? procedure to return something,
; it should return that.
; The ordering used is lexicographic (with #T > #F) and entries
; are examined in the following order:
;	1->0, 0->1
;
;	2->0, 0->2
;	2->1, 1->2
;
;	3->0, 0->3
;	3->1, 1->3
;	3->2, 2->3
;	...
(define make-minimal?
    (lambda (max-size)
	'(assert (and (integer? max-size)
		(exact? max-size)
		(>= max-size 0))
	    max-size)
	(let ((iotas
		    (proc->vector (+ max-size 1)
			giota))
		(perm
		    (make-vector max-size 0)))
	    (lambda (size graph folder state)
		'(assert (and (integer? size)
			(exact? size)
			(<= 0 size max-size))
		    size
		    max-size)
		'(assert (vector? graph)
		    graph)
		'(assert (procedure? folder)
		    folder)
		(fold-over-perm-tree (vector-ref iotas size)
		    (lambda (perm-x x state deeper accross)
			(case (cmp-next-vertex graph perm x perm-x)
			    ((less)
				#F)
			    ((equal)
				(vector-set! perm x perm-x)
				(deeper (+ x 1)
				    state))
			    ((more)
				(accross state))
			    (else
				(assert #F))))
		    0
		    (lambda (leaf-depth state accross)
			'(assert (eqv? leaf-depth size)
			    leaf-depth
			    size)
			(folder perm state accross))
		    state)))))

; Given a graph, a partial permutation vector, the next input and the next
; output, return 'less, 'equal or 'more depending on the lexicographic
; comparison between the permuted and un-permuted graph.
(define cmp-next-vertex
    (lambda (graph perm x perm-x)
	(let ((from-x
		    (vector-ref graph x))
		(from-perm-x
		    (vector-ref graph perm-x)))
	    (let -*-
		((y
			0))
		(if (= x y)
		    'equal
		    (let ((x->y?
				(vector-ref from-x y))
			    (perm-y
				(vector-ref perm y)))
			(cond ((eq? x->y?
				    (vector-ref from-perm-x perm-y))
				(let ((y->x?
					    (vector-ref (vector-ref graph y)
						x)))
				    (cond ((eq? y->x?
						(vector-ref (vector-ref graph perm-y)
						    perm-x))
					    (-*- (+ y 1)))
					(y->x?
					    'less)
					(else
					    'more))))
			    (x->y?
				'less)
			    (else
				'more))))))))


;;; ==== rdg.ss ====


; Fold over rooted directed graphs with bounded out-degree.
; Size is the number of verticies (including the root).  Max-out is the
; maximum out-degree for any vertex.  Folder is called via
;	(folder edges state)
; where edges is a list of length size.  The ith element of the list is
; a list of the verticies j for which there is an edge from i to j.
; The last vertex is the root.
(define fold-over-rdg
    (lambda (size max-out folder state)
	'(assert (and (exact? size)
		(integer? size)
		(> size 0))
	    size)
	'(assert (and (exact? max-out)
		(integer? max-out)
		(>= max-out 0))
	    max-out)
	'(assert (procedure? folder)
	    folder)
	(let* ((root
		    (- size 1))
		(edge?
		    (proc->vector size
			(lambda (from)
			    (make-vector size #F))))
		(edges
		    (make-vector size '()))
		(out-degrees
		    (make-vector size 0))
		(minimal-folder
		    (make-minimal? root))
		(non-root-minimal?
		    (let ((cont
				(lambda (perm state accross)
				    '(assert (eq? state #T)
					state)
				    (accross #T))))
			(lambda (size)
			    (minimal-folder size
				edge?
				cont
				#T))))
		(root-minimal?
		    (let ((cont
				(lambda (perm state accross)
				    '(assert (eq? state #T)
					state)
				    (case (cmp-next-vertex edge? perm root root)
					((less)
					    #F)
					((equal more)
					    (accross #T))
					(else
					    (assert #F))))))
			(lambda ()
			    (minimal-folder root
				edge?
				cont
				#T)))))
	    (let -*-
		((vertex
			0)
		    (state
			state))
		(cond ((not (non-root-minimal? vertex))
			state)
		    ((= vertex root)
			'(assert
			    (begin
				(gnatural-for-each root
				    (lambda (v)
					'(assert (= (vector-ref out-degrees v)
						(length (vector-ref edges v)))
					    v
					    (vector-ref out-degrees v)
					    (vector-ref edges v))))
				#T))
			(let ((reach?
				    (make-reach? root edges))
				(from-root
				    (vector-ref edge? root)))
			    (let -*-
				((v
					0)
				    (outs
					0)
				    (efr
					'())
				    (efrr
					'())
				    (state
					state))
				(cond ((not (or (= v root)
						(= outs max-out)))
					(vector-set! from-root v #T)
					(let ((state
						    (-*- (+ v 1)
							(+ outs 1)
							(cons v efr)
							(cons (vector-ref reach? v)
							    efrr)
							state)))
					    (vector-set! from-root v #F)
					    (-*- (+ v 1)
						outs
						efr
						efrr
						state)))
				    ((and (natural-for-all? root
						(lambda (v)
						    (there-exists? efrr
							(lambda (r)
							    (vector-ref r v)))))
					    (root-minimal?))
					(vector-set! edges root efr)
					(folder
					    (proc->vector size
						(lambda (i)
						    (vector-ref edges i)))
					    state))
				    (else
					state)))))
		    (else
			(let ((from-vertex
				    (vector-ref edge? vertex)))
			    (let -**-
				((sv
					0)
				    (outs
					0)
				    (state
					state))
				(if (= sv vertex)
				    (begin
					(vector-set! out-degrees vertex outs)
					(-*- (+ vertex 1)
					    state))
				    (let* ((state
						; no sv->vertex, no vertex->sv
						(-**- (+ sv 1)
						    outs
						    state))
					    (from-sv
						(vector-ref edge? sv))
					    (sv-out
						(vector-ref out-degrees sv))
					    (state
						(if (= sv-out max-out)
						    state
						    (begin
							(vector-set! edges
							    sv
							    (cons vertex
								(vector-ref edges sv)))
							(vector-set! from-sv vertex #T)
							(vector-set! out-degrees sv (+ sv-out 1))
							(let* ((state
								    ; sv->vertex, no vertex->sv
								    (-**- (+ sv 1)
									outs
									state))
								(state
								    (if (= outs max-out)
									state
									(begin
									    (vector-set! from-vertex sv #T)
									    (vector-set! edges
										vertex
										(cons sv
										    (vector-ref edges vertex)))
									    (let ((state
											; sv->vertex, vertex->sv
											(-**- (+ sv 1)
											    (+ outs 1)
											    state)))
										(vector-set! edges
										    vertex
										    (cdr (vector-ref edges vertex)))
										(vector-set! from-vertex sv #F)
										state)))))
							    (vector-set! out-degrees sv sv-out)
							    (vector-set! from-sv vertex #F)
							    (vector-set! edges
								sv
								(cdr (vector-ref edges sv)))
							    state)))))
					(if (= outs max-out)
					    state
					    (begin
						(vector-set! edges
						    vertex
						    (cons sv
							(vector-ref edges vertex)))
						(vector-set! from-vertex sv #T)
						(let ((state
							    ; no sv->vertex, vertex->sv
							    (-**- (+ sv 1)
								(+ outs 1)
								state)))
						    (vector-set! from-vertex sv #F)
						    (vector-set! edges
							vertex
							(cdr (vector-ref edges vertex)))
						    state)))))))))))))

; Given a vector which maps vertex to out-going-edge list,
; return a vector  which gives reachability.
(define make-reach?
    (lambda (size vertex->out)
	(let ((res
		    (proc->vector size
			(lambda (v)
			    (let ((from-v
					(make-vector size #F)))
				(vector-set! from-v v #T)
				(for-each
				    (lambda (x)
					(vector-set! from-v x #T))
				    (vector-ref vertex->out v))
				from-v)))))
	    (gnatural-for-each size
		(lambda (m)
		    (let ((from-m
				(vector-ref res m)))
			(gnatural-for-each size
			    (lambda (f)
				(let ((from-f
					    (vector-ref res f)))
				    (when (vector-ref from-f m); [wdc - was when]
                                       (begin
					(gnatural-for-each size
					    (lambda (t)
						(when (vector-ref from-m t)
                                                   (begin ; [wdc - was when]
						    (vector-set! from-f t #T)))))))))))))
	    res)))


;;; ==== test input ====

; Produces all directed graphs with N verticies, distinguished root,
; and out-degree bounded by 2, upto isomorphism (there are 44).

;(define go
;  (let ((N 7))
;    (fold-over-rdg N
;      2
;      cons
;      '())))