Prediction API v1.5
This documentation has been automatically generated using information supplied by the Google API Discovery service.
1 API Parameters
procedure
(_ [ #:alt alt #:fields fields #:key key #:oauth_token oauth_token #:prettyPrint prettyPrint #:quotaUser quotaUser #:userIp userIp]) → jsexpr? alt : string? = 'N/A fields : string? = 'N/A key : string? = (api-key) oauth_token : string? = 'N/A prettyPrint : string? = 'N/A quotaUser : string? = 'N/A userIp : string? = 'N/A
This is not actually a function. This is just using Scribble’s defproc form to list the optional keyword arguments that may be passed to all functions for this service.
fields: Selector specifying which fields to include in a partial response.
key: API key. Your API key identifies your project and provides you with API access, quota, and reports. Required unless you provide an OAuth 2.0 token.
oauth_token: OAuth 2.0 token for the current user.
prettyPrint: Returns response with indentations and line breaks.
quotaUser: Available to use for quota purposes for server-side applications. Can be any arbitrary string assigned to a user, but should not exceed 40 characters. Overrides userIp if both are provided.
userIp: IP address of the site where the request originates. Use this if you want to enforce per-user limits.
2 Resources
2.1 hostedmodels
procedure
→ jsexpr? hostedModelName : string? input : string? = 'N/A alt : string? = 'N/A fields : string? = 'N/A key : string? = (api-key) oauth_token : string? = 'N/A prettyPrint : string? = 'N/A quotaUser : string? = 'N/A userIp : string? = 'N/A
hostedModelName: The name of a hosted model.
input: Input to the model for a prediction
2.2 trainedmodels
procedure
→ jsexpr? maxResults : string? = 'N/A pageToken : string? = 'N/A alt : string? = 'N/A fields : string? = 'N/A key : string? = (api-key) oauth_token : string? = 'N/A prettyPrint : string? = 'N/A quotaUser : string? = 'N/A userIp : string? = 'N/A
maxResults: Maximum number of results to return
pageToken: Pagination token
procedure
(prediction-trainedmodels-get #:id id [ #:alt alt #:fields fields #:key key #:oauth_token oauth_token #:prettyPrint prettyPrint #:quotaUser quotaUser #:userIp userIp]) → jsexpr? id : string? alt : string? = 'N/A fields : string? = 'N/A key : string? = (api-key) oauth_token : string? = 'N/A prettyPrint : string? = 'N/A quotaUser : string? = 'N/A userIp : string? = 'N/A
id: The unique name for the predictive model.
procedure
(prediction-trainedmodels-predict #:id id [ #:input input #:alt alt #:fields fields #:key key #:oauth_token oauth_token #:prettyPrint prettyPrint #:quotaUser quotaUser #:userIp userIp]) → jsexpr? id : string? input : string? = 'N/A alt : string? = 'N/A fields : string? = 'N/A key : string? = (api-key) oauth_token : string? = 'N/A prettyPrint : string? = 'N/A quotaUser : string? = 'N/A userIp : string? = 'N/A
id: The unique name for the predictive model.
input: Input to the model for a prediction
procedure
(prediction-trainedmodels-analyze #:id id [ #:alt alt #:fields fields #:key key #:oauth_token oauth_token #:prettyPrint prettyPrint #:quotaUser quotaUser #:userIp userIp]) → jsexpr? id : string? alt : string? = 'N/A fields : string? = 'N/A key : string? = (api-key) oauth_token : string? = 'N/A prettyPrint : string? = 'N/A quotaUser : string? = 'N/A userIp : string? = 'N/A
id: The unique name for the predictive model.
procedure
→ jsexpr? id : string? = 'N/A modelInfo : string? = 'N/A storageDataLocation : string? = 'N/A storagePMMLLocation : string? = 'N/A storagePMMLModelLocation : string? = 'N/A trainingComplete : string? = 'N/A trainingStatus : string? = 'N/A utility : string? = 'N/A created : string? = 'N/A kind : string? = 'N/A selfLink : string? = 'N/A alt : string? = 'N/A fields : string? = 'N/A key : string? = (api-key) oauth_token : string? = 'N/A prettyPrint : string? = 'N/A quotaUser : string? = 'N/A userIp : string? = 'N/A
id: The unique name for the predictive model.
modelInfo: Model metadata.
storageDataLocation: Google storage location of the training data file.
storagePMMLLocation: Google storage location of the preprocessing pmml file.
storagePMMLModelLocation: Google storage location of the pmml model file.
trainingComplete: Training completion time (as a RFC 3339 timestamp).
trainingStatus: The current status of the training job. This can be one of following: RUNNING; DONE; ERROR; ERROR: TRAINING JOB NOT FOUND
utility: A class weighting function, which allows the importance weights for class labels to be specified [Categorical models only].
created: Insert time of the model (as a RFC 3339 timestamp).
kind: What kind of resource this is.
selfLink: A URL to re-request this resource.
procedure
→ jsexpr? id : string? csvInstance : string? = 'N/A label : string? = 'N/A alt : string? = 'N/A fields : string? = 'N/A key : string? = (api-key) oauth_token : string? = 'N/A prettyPrint : string? = 'N/A quotaUser : string? = 'N/A userIp : string? = 'N/A
id: The unique name for the predictive model.
csvInstance: The input features for this instance
label: The class label of this instance
procedure
(prediction-trainedmodels-delete #:id id [ #:alt alt #:fields fields #:key key #:oauth_token oauth_token #:prettyPrint prettyPrint #:quotaUser quotaUser #:userIp userIp]) → jsexpr? id : string? alt : string? = 'N/A fields : string? = 'N/A key : string? = (api-key) oauth_token : string? = 'N/A prettyPrint : string? = 'N/A quotaUser : string? = 'N/A userIp : string? = 'N/A
id: The unique name for the predictive model.