11/01/2011 15:24:34

8
A simple formatter for PLT Scheme
3
Jacob J. A. Koot

A simple formatter for PLT Scheme
By Jacob J. A. Koot
Rationale
Simple formatting tools can be useful when readability of output for the human eye is of some importance, but not to the extent that a highly finished presentation is called for. Examples of simple formatters for Scheme are the various versions of procedure format. They are handy tools, but in some cases may not provide enough functionality. Which functions a simple formatting tool should provide and which shape it should have is a matter of personal taste, I think. In this document I show a simple formatter that more or less satisfies my own taste. It combines some of the powerful features of the format statement of Fortran with the flexibility of Scheme’s generic procedures write, display and format. The principles are simple enough to get started almost immediately. Nevertheless tools for alignment, tabulation, several numerical formats, literals, iterations and compound instructions are included. Field widths, tabulator positions and repetition counts can be constants within the format, but can also be obtained from the data.
Format procedures
Formats can be regarded as procedures that transform data from one representation into another one. Procedure fmt is based on this idea. It transforms a string of format instructions into a Scheme procedure that accepts data and returns the formatted external representation of the data as a string or sends it through an output port. The format instructions are non verbose. Each elementary instruction consists of one single character, possibly preceded by a repetition count and followed by one or more numerical arguments, such as a field width or tabulation position. Parentheses and square brackets are used for compound instructions. A format can include literal data, such as headers.

Procedure fmt
Procedure
: (fmt ‹format› … [‹output port›] ‹format› …) → ‹format procedure›.
‹format›
: ‹format string› or ‹format procedure›.
‹format string›
: string of format instructions as described in this document.

‹output port›
: output port or symbol arg[ument], cur[rent] or str[ing]. Default: symbol string.

Procedure fmt takes a number of formats and an optional output port argument. It returns a format procedure. If no format is given, "" is assumed. If more than one format is given, they are concatenated to form one single string with commas inserted between the components. The commas are instruction separators. Multiple commas have the same effect as one single comma. Format procedures are inserted as compound instructions without being parsed again and ignoring the port of the format procedure. When an output port or symbol current or string is given for the output port argument, the returned format procedure can be used as follows:
Procedure: (‹format procedure› ‹datum› …) → string or void.
The format procedure formats the data according to the instructions in the formats from which the procedure was built. If it was built with symbol string for its port the results are returned as a string. If it was built with symbol current for its port, the results are sent through the current output port and void is returned. If an output port was given, the results are sent through that port and void is returned. When fmt was called with symbol argument for the port argument, the returned format procedure is used as follows:
Procedure
: (‹format procedure› ‹output port› ‹datum› …) → string or void.
‹output port›
: output port or symbol cur[rent] or str[ing].
The formatted data are sent through the output port, the current output port or returned as a string.
Predicate: (fmt? ‹object›) → Boolean
#t if the argument is a format procedure made by procedure fmt, else #f.

Format string
A format string represents a format procedure in its own simple language. There is no distinction between lower case and capital letters, except within literal data. White space and commas are irrelevant except within literal data and where occurring or required as separator between instructions and numerical arguments. Commas separate instructions and therefore must not appear between numerical arguments belonging to the same instruction. Numerical arguments must not contain spaces. In many cases no separator is required between successive instructions.
Format instructions

A format procedure is given data to be formatted. A format instruction that consumes a datum, removes it from the list of data in order that the next data consuming instruction gets the next datum. An error is reported if an attempt is made to execute a data consuming instruction after all data already have been consumed or when unconsumed data remain after completion of the format procedure. There are instructions that add data to the list of remaining data, possibly after consuming data. The added data always are the first to be consumed next. For example, instruction Y consumes a datum, which must be a number, and adds the real and the imaginary part of the number in front of the remaining data. Subsequent format instructions can treat the real and imaginary part separately. A synopsis of all instructions is available here.
Instruction arguments

In the description of the instructions, ξ represents an instruction. ν, μ and ε represent numerical arguments to be used as a repetition count, field width or tabulation position. Numerical arguments have the following forms:
 δδ… and δ…. (a sequence of one or more decimal figures or a sequence of zero or more decimal figures immediately followed by a period) Each δ is a decimal figure. A period without preceding decimal figure is interpreted as zero. The argument must not contain white space, nor commas.
 #
 Consumes a datum, which must be a natural number.
 This number is used as numerical argument. In data consuming instructions the sharp signs consume their numbers first.
Examples:

((fmt "I5") 12)
→ "◦◦◦12" ; integer format, field width 5.
((fmt "I5.3") 12)
→ "◦◦012" ; integer format, field width 5, at least 3 decimal figures.
((fmt "I##") 5 3 12)
→ "◦◦012" ; idem taking the widths from the data.
Adjacent numerical arguments belonging to the same instruction can be separated by white space but not by commas. A comma indicates that no more arguments follow. Between two adjacent numerical arguments at least one white space character is required if the first one ends with a decimal figure and the second one begins with a decimal figure or consists of a period only. Numerical arguments may be omitted from the end of an instruction, but if the next instruction begins with a decimal figure, period or sharp sign, a comma is required as separator. Omitted arguments are assumed to be zero.
Elementary output instructions
 D
 Consumes one datum and displays it according to the current alignment. Strings are displayed without their double quotes and escaped characters are written as the characters they represent. Characters are written without the sharp sign and backslash and named characters and Unicode, such as #\space and #\u3bb, are written as the characters they represent (space and lower case lambda). Control characters, both separate ones and those that are part of a string, have their intended effects as far as applicable to the output port. This applies to both separate strings and those that are part of the datum, for example when the datum is a list of strings. The same applies to both separate characters and those that are part of the datum. If the datum is a string and alignment is switched on, heading and trailing spaces are removed before the string is aligned. No spaces are removed from strings that are non trivial parts of the datum, for example in case of a list of strings.
 W
 Consumes one datum and writes its symbolic form according to the current alignment. The symbolic form of a datum is one of the forms it can have within a program. A datum that has no symbolic form, e.g. a procedure, is usually written as #<description>.
 P
 Consumes one datum and prints it according to the current alignment. Usually the results are the same as with instruction W.

 X
 Displays one space.

 /
 Displays a newline character and marks the start of the line to follow. See tabulation.
 |
 Executes a newline instruction only if not at the start of the current line. See tabulation.
Examples:
((fmt "dxdxd") "Jacob" 3 #\x)
→ "Jacob◦3◦x"
((fmt "wxwxw") "Jacob" 3 #\x)
→ "\"Jacob\"◦3◦#\\x"
((fmt "d") (list "Jacob" 3 #\x))
→ "(Jacob◦3◦x)"
((fmt "w") (list "Jacob" 3 #\x))
→ "(\"Jacob\"◦3◦#\\x)"
Alignment
Alignment applies to literal data and the instructions D, W, P, B, O and H. When alignment is switched on, these instructions add heading and/or trailing spaces if otherwise less characters would be generated than indicated by the field width. Notice that instruction D first removes heading and trailing spaces when aligning a string. The same holds when aligning a literal datum. Output that does not fit within the field width is not truncated. Initially alignment is switched off. When a format procedure is called from another format procedure, the former inherits the alignment from the latter. If the called procedure alters the alignment, the alteration remains effective after return. Instruction A can be used to restore the previous alignment. The instructions I, F and E have their own alignment, independent from the alignment described in this section.
 N
 Switches alignment off. No spaces are removed or added.
 Lν
 For left alignment in fields of ν characters.
 Rν
 For right alignment in fields of ν characters.
 Cν
 For centred alignment in fields of ν characters. When needed, spaces are added to the left and to the right in order to match the field width. If the number of spaces to be added is even, say 2k, then k spaces are added both at the left and at the right. If the number of spaces to be added is odd, say 2k+1, then k+1 spaces are added to the left and k spaces to the right.

 Aξ
 Memorizes the current alignment and field width, executes instruction ξ and upon completion restores the memorized alignment and field width.
Examples:
((fmt "L5*d") 1 2 3)
→ "1◦◦◦◦2◦◦◦◦3◦◦◦◦"
((fmt "R5*d") 1 2 3)
→ "◦◦◦◦1◦◦◦◦2◦◦◦◦3"
((fmt "C5*d") 1 2 3)
→ "◦◦1◦◦◦◦2◦◦◦◦3◦◦"
((fmt "N d") "◦◦Jacob◦◦")
→ "◦◦Jacob◦◦"
; no spaces removed, nor added.
((fmt "L0 d") "◦◦Jacob◦◦")
→ "Jacob"
; spaces removed, no spaces added.
((fmt "L8 d") "◦◦Jacob◦◦")
→ "Jacob◦◦◦"
; spaces first removed, then added.
Literal data
 'κ…'
 Each κ is an arbitrary character, except that a single quote must be written as two immediately adjacent single quotes. The string "κ…" is displayed according to the current alignment. A separator (comma or white space) is required between two adjacent literals.
 ^'κ…'
 'κ…' has the same form as above. The string must contain zero or more symbolic expressions. These are added to the list of remaining data. They are not evaluated. The leftmost expression becomes the first next datum.
Examples:
((fmt "r10'Article','Price'"))
→ "◦◦◦Article◦◦◦◦◦Price"
((fmt "^'Article◦Price'r10*d"))
→ "◦◦◦Article◦◦◦◦◦Price"
Numerical formats
 Iνμ
 Consumes and displays a real number. First the sign of the datum is determined. Subsequently the datum is rounded to an exact integer number. If rounding produces zero, the sign is retained. If a sign is to be written, it is placed immediately in front of the first decimal figure. Leading spaces are added if otherwise less than ν characters would be produced. In all cases the result contains at least μ decimal figures or at least one if μ is omitted. The exceptional numbers (inf.0 and (nan.0 are treated specially. They are right justified in a field of at least ν characters. Instruction I is particularly useful for integer numbers, but nevertheless accepts any real number.
Examples:
((fmt "*I3 ") 2 3.4 5.6)
→ "◦◦2◦◦3◦◦6"
((fmt "*I3.2") 2 3.4 5.6)
→ "◦02◦03◦06"
((fmt "I") -0.1)
→ "-0"
((fmt "I") 1.0e1000000)
→ "+inf.0"
((fmt "I") -1.0e1000000)
→ "-inf.0"
((fmt "I") 1.0e-100000)
→ "0"
((fmt "I") -1.0e-100000)
→ "-0"
(string-length ((fmt "I") #e1e100000))
→ 100001
 Fνμ
 Consumes and displays a real number in decimal expansion: leading spaces, [sign], integer part, period, fraction of exactly μ decimal figures. The datum is rounded such as to fit the width of the fraction. If rounding yields zero, the sign is retained. The result has at least one decimal figure before the period. Leading spaces are added if otherwise less than ν characters would be produced. The exceptional numbers (inf.0 and (nan.0 are treated specially. They are right justified in a field of at least ν characters.
Examples:
((fmt "*F3 ") 2 3.4 5.6)
→ "◦2.◦3.◦6."
((fmt "*F5.2") 2 3.4 5.6)
→ "◦2.00◦3.40◦5.60"
((fmt "F.4") 2/3)
→ "0.6667"
((fmt "D ") 2/3)
→ "2/3"
((fmt "F") 1.0e1000000)
→ "+inf.0"
((fmt "F") -1.0e1000000)
→ "-inf.0"
((fmt "F") -1.0e-100000)
→ "-0."
 Eνμε
 Consumes and displays a real number in scientific notation: leading blanks, [sign], one decimal figure, period, exactly μ decimal figures, letter e, sign of exponent, ε or more decimal figures of exponent. If the number is not zero, the output is normalized such that the decimal figure before the decimal point is not zero. If the number is zero, all decimal figures are zero. Leading spaces are added if otherwise less than ν characters would be produced. The exceptional numbers (inf.0 and (nan.0 are treated specially. They are right justified in a field of at least ν characters.
Examples:
((fmt "*E10.3.2") 2/3 2.3e-2)
→ "◦6.667e-01◦2.300e-02"
((fmt "E.5") 2/3)
→ "6.66667e-1"
((fmt "E15.5.4") 2/3)
→ "◦◦6.66667e-0001"
((fmt "exe") #e-1e100000 -1.0e1000000)
→ "-1.e+100000◦-inf.0"
((fmt "exe") #e-1e-100000 -1.0e-100000)
→ "-1.e-100000◦-0.e+0"
 B

Displays a real number in binary notation.

 O

Displays a real number in octal notation.

 H

Displays a real number in hexadecimal notation.
Instructions B, O and H first convert the number into an exact one and use number->string to convert the absolute value and finally display the result according to the current alignment and sign mode. The exceptional numbers (inf.0 and (nan.0 are treated as with instruction D.
Examples:
((fmt "H")
20/31)
→ "14/1f"
((fmt "D")
20/31)
→ "20/31"
((fmt "H")
-2.71)
→ "-ad70a3d70a3d7/4000000000000"
((fmt "H")
2.71e-2)
→ "6f0068db8bac7/100000000000000"
((fmt "H")
#e2.71e-2)
→ "10f/2710" ; the 271 in the denominator is a coincidence.
((fmt "R8 H")
2.71e-200000)
→ "◦◦◦◦◦◦◦0"
((fmt "R8 H")
-2.71e-200000)
→ "◦◦◦◦◦◦-0"
((fmt "R8 H")
2.71e2000000)
→ "◦◦+inf.0"
Sign mode

The sign mode is relevant for the instructions I, F, E, B, O and H. When sign mode is off, positive numbers get no sign. When sign mode is on, positive numbers and +0.0 get a plus sign. Negative numbers always get a minus sign, -0.0 included. Instructions I, F and E may round the number such as to fit the fraction. If rounding a negative number yields zero, the minus sign is retained. When a format procedure is called from another format procedure, the former inherits the sign mode from the latter. If the called procedure alters the sign mode, this mode remains effective after return. Instruction $ can be used to restore the previous sign mode.
 +
 Sets sign mode on. This is relevant for the numerical format instructions only.
 –
 Sets sign mode off. This is relevant for the numerical format instructions only.
 $ξ
 Memorizes the current sign mode, executes instruction ξ and upon completion restores the memorized sign mode.

Example:
((fmt "+ F6.2 $(-F6.2) F6.2") 3.4 3.4 3.4) → "◦+3.40◦◦3.40◦+3.40"
Tabulation

Tabulation instructions reposition the write head relative to the start of the current line. The first character of the current line has index 0. Initially the current line starts at the very beginning of the output to be produced. The newline instructions / and | shift the start of the current line to the start of the new line. Newlines made in any other way (for example when part of a literal datum) do not reposition the start of the current line. If the new position is beyond the end of the current line, spaces are added, but no existing output is erased. Placing the write head before the end of the current line does not erase output, but allows subsequent output to replace previous output. Tabulation instructions are effective even if the output device does not allow reposition of the write head.
 Tν
 Places the write head at position ν of the current line.
 >ν
 Positions the write head forward relative to the current position.

 <ν
 Positions the write head backwards relative to the current position. An error is signalled when an attempt is made to position the write head before the start of the current line.
 &
 Positions the writes head at the end of current line.

 @ξ
 Memorizes the position of the start of the current line, executes instruction ξ and upon completion restores the memorized position.

Examples:
((fmt "t10 d t6 d t2 d &r4d") 1 2 3 4)
→ "◦◦3◦◦◦2◦◦◦1◦◦◦4"
((fmt "*(t#d)") 1 1 4 4 3 3 5 5 2 2 6 6 7 7 0 0)
→ "01234567"
Conditional instructions

 !ξ
 Executes instruction ξ only if there are more data.
 ?ξ
 Executes instruction ξ only if there are no more data.
 Qξξ
 Inspects the next datum without consuming it. If it is true, the first ξ is executed. If it is false, the second ξ is executed. An error is signalled if there are no more data.
Examples:
((fmt "!(*(d!x)/)") 1 2 3 4)
→ "1◦2◦3◦4\n"
((fmt "!(*(d!x)/)"))
→ ""
((fmt "q'True','False's") #t)
→ "True"
((fmt "*(q(dx)s)") 'a #f 'b)
→ "a◦b◦" ; displays true data only.
Iterations

 *ξ
 Repeated execution of ξ until no data remain. No comma must appear between * and ξ.
 νξ
 Instruction ξ is executed ν times. No comma must appear between ν and ξ.
Examples:
((fmt "L3 4d") 1 2 3 4)
→ "1◦◦2◦◦3◦◦4◦◦"
((fmt "L3 *d") 1 2 3 4)
→ "1◦◦2◦◦3◦◦4◦◦"
((fmt "L# #d") 3 4 1 2 3 4)
→ "1◦◦2◦◦3◦◦4◦◦"
Compound instructions

 (ξ…)
 Compound instruction. Useful for conditional instructions and iterations.
 [ξ…]
 Special compound instruction. The output of the instructions is gathered in a string which after completion of the compound instruction is added to the remaining data and becomes the first next datum. Each special compound instruction has its own offset for the tabulator. The square brackets are part of the instruction. They do not indicate that ξ… is optional. In fact the ellipsis makes ξ… optional. [] produces an empty string.

Examples:
((fmt "!(*(d!x)/)") 1 2 3 4)
→ "1◦2◦3◦4\n"
((fmt "L3 [*d] c20 d") 1 2 3 4)
→ "◦◦◦◦◦1◦◦2◦◦3◦◦4◦◦◦◦◦"
Miscellaneous instructions

 Mξ
 Memorizes the current alignment, field width, tabulator offset and sign mode, executes the instruction and restores the memorized state.
 :
 Exits from a compound instruction or from a format procedure or format string called with instruction K. At top level same as instruction ;.
 ;
 Exits from the top level format procedure.
 S
 Skips one datum.

 ~
 Positions the write head at the end of the current line and writes all remaining data separated by spaces and terminated by a newline. Same as "!(>n*(w!x)/)".

 G
 Consumes a datum which must be a natural number or #f. It is supposed to be a time measured in seconds from the platform specific starting time. #f is for the current time. The time is displayed as: DDD,◦dd◦MMM◦yyyy◦hh:mm:ss◦(hhmm
DDD
First three letters of the name of the day of the week.
dd
Two decimal figures for the number of the day of the month.
MMM
First three letters of the name of the month.
yyyy
Four decimal figures for the year.
hh
Two decimal figures for the hour of the day.

mm
Two decimal figures for the minute within the hour.

ss
Two decimal figures for the second within the minute (leap seconds may be included)
(hhmm
Time zone, hours and minutes, sign followed by four decimal figures.
Examples (assuming Windows XP home in time zone +0100)
((fmt "g") 0)
→
"Thu,◦01◦Jan◦1970◦01:00:00◦+0100"
((fmt "^'0' g"))

Same as: ((fmt "g") 0)
((fmt "g") (sub1 (expt 2 31)))
→
"Tue,◦19◦Jan◦2038◦04:14:07◦+0100"
((fmt "G") #f)

Same as: ((fmt "G") (current-seconds))
((fmt "^'#f' G"))

Same as: ((fmt "G") #f)
Unfolding
 U
 Unfolds the next datum. If the datum is a vector or list, the elements will be treated as separate components of data. These data are preceded by the number of elements. A structure is first converted to a vector and the latter is unfolded. If the datum is not a vector, list or structure it remains in the list of data as it is and the exact number one is consed to the data as the first next datum. Improper lists are not unfolded.
 V
 Recursively unfolds the next datum. The elements will be treated as separate components of data. These data are preceded by the number of elements.
 Z
 Recursively unfolds all remaining data. The elements will be treated as separate components of data. These data are preceded by the number of elements.

 Y
 Consumes a datum, which must be a number. It is decomposed into its real and imaginary part. These two real numbers are consed to the remaining data, the real part becoming the first next datum, the imaginary part the second one.
Examples:
((fmt "u#(dx)") '(a b c d))
→ "a◦b◦c◦d◦"
((fmt "u*(dx)") '(a b c d))
→ "4◦a◦b◦c◦d◦"
((fmt "yf.3+f.2'i'") -12.34+56.78i)
→ "-12.340+56.78i"
Procedure calls
 λ
 Consumes the next datum, which must be a procedure. The procedure must accept one argument, for which it receives the list of remaining data. It must return a list. This list replaces the list of remaining data. The procedure call is wrapped in a continuation barrier in order to disallow re-entry by means of a continuation. Allowing reentrance could lead to unexpected results after the state of the format procedure has been altered.
 K
 Consumes the next datum, which must be a format procedure or a format string. The port of the called format procedure is ignored. The instructions are executed as part of the calling format procedure. The called format procedure inherits the alignment, tabulator and sign mode from the caller. If it alters the state, the alterations remain in effect after return. Instructions A, @, $ and M can be used to preserve the alignment, tabulator offset and sign mode.
Reading from an input port

 =
 Consumes one datum, which must be an input port. One datum is read from that port. If a datum has successfully been read, #t and the datum are prefixed to the list of remaining data. If an end of file was found, #f is prefixed to the list of remaining data.
 J
 Consumes one datum, which must be an input port. All data are read from that port starting from its current position up to an end of file mark. The read data are prefixed to the list of remaining data. The prefixed data are preceded by an exact integer number specifying the number of read data. The end of file mark is not included in the data.
Example:
(define kopy

 (let ((fmt (fmt "Js~" 'port)))
 (lambda (p q) (fmt q p))))
(kopy (open-input-string "◦◦Copied◦◦with◦\n◦single◦◦spaces◦◦") 'string) →
"Copied◦with◦single◦spaces\n"
Reuse of format procedures
(define a (fmt "X'billy'XD"))
(define b (fmt "X'minny'XD"))
(define c (fmt "*(" a "!" b ")"))
(c 1 2 3 4 5) → "◦billy◦1◦minny◦2◦billy◦3◦minny◦4◦billy◦5"
When format procedure c is constructed, format procedures a and b are inserted. The result is the same as with "*((X'billy'XD)!(X'minny'XD))", but without parsing the underlined parts again.
Elaborated examples

Printing a table

(define print-table

 (let*

 ((line "n40('-')/")
 (headers "R10'article'◦'number'◦'price pp'◦'total'/")
 (data "r10u#(usus2d2f10.2/)") ; "us" means: unfold and skip element count

 (grand-total "r30'grand total'f10.2/"))
 (let

 ((fmt-proc (fmt "/" line headers line data line grand-total line 'current)))
 (lambda (table)
 (let* ((totals (map (λ (x) (* (cadr x) (caddr x))) table)) (grand-total (apply + totals)))
 (fmt-proc (map list table totals) grand-total))))))
(print-table '((chair 4 50) (table 1 100) (pillow 4 10))) → void, and displays:
--

 article number price pp total

--

 chair 4 50.00 200.00

 table 1 100.00 100.00

 pillow 4 10.00 40.00

--

 grand total 340.00

--
Triangle of Pascal
(define binomials

 (let

 ((fmt-row (fmt "r5 d us c4 [*d] c45 d"))
 (fmt-table (fmt "/u#(d/)" 'current)))
 (define (make-next-row order prev-row)
 (list->vector

 (cons 1

 (let loop ((j 1))
 (if (> j order) '(1)
 (cons (+ (vector-ref prev-row (sub1 j)) (vector-ref prev-row j))
 (loop (add1 j))))))))
 (lambda (n)
 (fmt-table

 (let loop ((order 0) (row #1(1)))
 (cons (fmt-row order row)
 (if (>= order n) '()
 (loop (add1 order) (make-next-row order row)))))))))
(binomials 10) → void, and displays:
 0 1

 1 1 1

 2 1 2 1

 3 1 3 3 1

 4 1 4 6 4 1

 5 1 5 10 10 5 1

 6 1 6 15 20 15 6 1

 7 1 7 21 35 35 21 7 1

 8 1 8 28 56 70 56 28 8 1

 9 1 9 36 84 126 126 84 36 9 1

 10 1 10 45 120 210 252 210 120 45 10 1
Printing a curve

(define (print-curve from to function)
 (let*

 ((fmt (fmt "I3XQF6.2(S6'◦')X[Q(#'-','-')SQ(T#'|')SQ(T#'*')S]D/" 'current))
 ; i3
abscissa
always
 ; Qf6.2(s6'◦')
ordinate
only if true, i.e. if the function is defined for this abscissa
 ; Q(#'-'◦'-')s
y-axis (horizontal)
only if true, i.e. if abscissa is zero
 ; q(t#'|')s

x-axis (vertical)
only if true, i.e. if within the range
 ; q(t#'*')s

point on curve
only if true, i.e. if the function is defined for this abscissa
 (scale-size 40)
 (abscissas (for/list ((i (in-range from to))) i))
 (ordinates (map function abscissas))
 (mini (apply min (filter (λ (x) x) ordinates)))
 (maxi (apply max (filter (λ (x) x) ordinates)))
 (scale (lambda (x) (and x (round (* scale-size (/ (- x mini) (- maxi mini)))))))
 (scaled-ordinates (map scale ordinates))
 (axis (and (<= mini 0 maxi) (scale 0)))
 (fmt (λ (x y p) (fmt x y (and (zero? x) scale-size) axis p))))
 (for-each fmt abscissas ordinates scaled-ordinates)))
(print-curve -6 7 (λ (x) (* (+ x 3) (- x 3) -1/3))) → void after displaying:
 -6 -9.00 * |

 -5 -5.33 * |

 -4 -2.33 * |

 -3 0.00 *

 -2 1.67 | *

 -1 2.67 | *

 0 3.00 ------------------------------|---------*

 1 2.67 | *

 2 1.67 | *

 3 0.00 *

 4 -2.33 * |

 5 -5.33 * |

 6 -9.00 * |

(print-curve -6 7 (λ (x) (and (not (zero? x)) (/ x)))) → void after displaying:

 -6 -0.17 * |

 -5 -0.20 * |

 -4 -0.25 * |

 -3 -0.33 * |

 -2 -0.50 * |

 -1 -1.00 * |

 0 --------------------|--------------------

 1 1.00 | *

 2 0.50 | *

 3 0.33 | *

 4 0.25 | *

 5 0.20 | *

 6 0.17 | *

Synopsys

	instr
	description
	consumption
	output
	production
	alignment

	Aξ
	preserve alignment
	
	
	
	

	B
	binary
	real
	yes
	
	yes

	Cν
	centred alignment
	
	
	
	

	D
	display
	any
	yes
	
	yes

	Eνμε
	scientific notation
	real
	yes
	
	numerical

	Fνμ
	decimal expansion
	real
	yes
	
	numerical

	G
	date and time
	natural or #f
	yes
	
	31 chars

	H
	hexadecimal
	real
	yes
	
	yes

	Iνμ
	integer
	real
	yes
	
	numerical

	J
	read up to end of file
	input port
	
	n + data
	

	K
	call fmt-proc/string
	fmt-proc/string
	
	
	

	Lν
	left alignment
	
	
	
	

	Mξ
	preserve state
	
	
	
	

	N
	no alignment
	
	
	
	

	O
	octal
	real
	yes
	
	yes

	P
	print
	any
	yes
	
	yes

	Qξξ
	conditional
	not consumed
	
	
	

	Rν
	right alignment
	
	
	
	

	S
	skip
	any
	
	
	

	Tν
	tabulator
	
	spaces if beyond eol
	
	

	U
	unfold
	any
	
	n + data
	

	V
	unfold recursively
	any
	
	n + data
	

	W
	write
	any
	yes
	
	yes

	X
	space
	
	space
	
	no

	Y
	complex number
	number
	
	real + imaginary
	

	Z
	unfold recursively
	all data
	
	n + data
	

	/
	newline
	
	newline
	
	no

	|
	newline but not double
	
	newline?
	
	no

	'κ…'
	literal
	
	literal
	
	yes

	^'κ…'
	literal
	
	
	data from literal
	

	(ξ…)
	compound instruction
	
	
	
	

	[ξ…]
	special compound
	
	
	string
	

	~
	display all data
	all data
	all data
	
	no

	*ξ
	until no more data
	
	
	
	

	(ξ
	repeat (times
	
	
	
	

	!ξ
	if more data left
	
	
	
	

	?ξ
	if no more data left
	
	
	
	

	+
	sign mode on
	
	
	
	

	-
	sign mode off
	
	
	
	

	$ξ
	preserve sign mode
	
	
	
	

	:
	local exit
	
	
	
	

	;
	top level exit
	
	
	
	

	&
	tabulate to end of line
	
	
	
	

	@ξ
	preserve tabulator
	
	
	
	

	<(
	relative tab backward
	
	
	
	

	>ν
	relative tab forward
	
	spaces if beyond eol
	
	

	=
	read
	input port
	
	#f or #t + datum
	

	λ
	call procedure
	procedure + all
	
	as returned
	

The columns ‘consumption’, ‘output’ and ‘production’ do not account for data that may be consumed, displayed or produced by ν, μ, ε or ξ. ‘n + data’ indicates that the produced data are prefixed by the number of added elements. The produced data are always placed before the data that remain after consumption.
� 	In this document ‘natural number’ means an exact non negative integer number. (� HYPERLINK \l "footnote1" ��return to text�)

�	Where relevant, ‘◦’ is used to show spaces. (�HYPERLINK \l "footnote2"��return to text�)

