leftist-heap.scm
;;; leftist-heap.scm  --  Jens Axel Søgaard  --  28th dec 2005

;;; LEFTIST HEAP [Okasaki, p.17-20]

; A *Leftist heap* is a heap-ordered binary tree with the /leftist property/:
; The rank of any left child is at least as large as the rank of its right sibling.
; The *rank* of a node is the length of the its *right spine*, which is the
; rightmost path from the node to an empty node.

;;; Time             worst case
;  delete-min         O(log n)
;  empty              O(1)
;  empty?             O(1)
;  find-min           O(1)
;  insert             O(log n)
;  union              O(log n)

(module leftist-heap mzscheme
  (require 
   (lib "67.ss" "srfi")
   (lib "42.ss" "srfi")
   (only (lib "list.ss") foldl))
  
  ;;; DATA DEFINITION
  
  ; A HEAP is either
  ;    (make-heap-empty cmp)
  ; or
  ;    (make-heap-node cmp rank elm left right)
  ; where
  ;   cmp  is a compare function,
  ;   rank is an integer, and
  ;   left and right are heaps.
  
  (define-struct heap              (compare))
  (define-struct (heap-empty heap) ())
  (define-struct (heap-node heap)  (rank elm left right))
  
  ;;; CORE HEAP OPERATIONS
  
  (define empty
    (case-lambda 
      [()    (make-heap-empty (current-compare))]
      [(cmp) (make-heap-empty cmp)]))
  
  (define empty? heap-empty?)
  
  (define (rank h)
    (if (empty? h)
        0
        (heap-node-rank h)))
  
  (define (make x a b)
    (let ([ra (rank a)] 
          [rb (rank b)]
          [cmp (heap-compare a)])
      (if (>= ra rb)
          (make-heap-node cmp (add1 rb) x a b)
          (make-heap-node cmp (add1 ra) x b a))))
  
  (define (union h1 h2)
    (cond
      [(empty? h1) h2]
      [(empty? h2) h1]
      [else        (let ([x (heap-node-elm h1)]
                         [y (heap-node-elm h2)])
                     (if<=? ((heap-compare h1) x y)
                            (make x (heap-node-left h1) (union (heap-node-right h1) h2))
                            (make y (heap-node-left h2) (union h1 (heap-node-right h2)))))]))
  
  (define (insert x h)
    (let ([cmp (heap-compare h)])
      (union (make-heap-node cmp 1 x (make-heap-empty cmp) (make-heap-empty cmp))
             h)))
  
  (define (delete x h)
    (define (delete/sf x h s f)
      (cond
        [(empty? h)                    
         (s h)]
        [(=? (heap-compare h) x (heap-node-elm h))
         (s (union (heap-node-left h) (heap-node-right h)))]
        [(<? (heap-compare h) x (heap-node-elm h))
         (f)]
        [else                          
         (let ([cmp (heap-compare h)])
           (let ([y (heap-node-elm h)]
                 [l (heap-node-left h)]
                 [r (heap-node-right h)])
             (delete/sf x l
                        (lambda (h1) (s (make y h1 r)))
                        (lambda ()   (delete/sf x r
                                                (lambda (h1) (s (make y l h1)))
                                                (lambda () (f)))))))]))
    (delete/sf x h 
               (lambda (h1) h1) 
               (lambda ()   h)))
  
  (define (delete-all x h)
    (define (delete-all/sf x h s f)
      (cond
        [(empty? h)                    
         (s h)]
        [(=? (heap-compare h) x (heap-node-elm h))
         (s (union (delete-all x (heap-node-left h)) 
                   (delete-all x (heap-node-right h))))]
        [(<? (heap-compare h) x (heap-node-elm h))
         (f)]
        [else                          
         (let ([cmp (heap-compare h)])
           (let ([y (heap-node-elm h)]
                 [l (heap-node-left h)]
                 [r (heap-node-right h)])
             (delete-all/sf x l
                        (lambda (l1) (s (delete-all/sf x r
                                                       (lambda (r1) (make y l1 r1))
                                                       (lambda ()   (make y l1 r)))))
                        (lambda ()   (delete-all/sf x r
                                                    (lambda (r1) (s (make y l r1)))
                                                    (lambda ()   (f)))))))]))
    (delete-all/sf x h 
                   (lambda (h1) h1) 
                   (lambda ()   h)))
    
  (define (find-min h)
    (heap-node-elm h))
  
  (define (delete-min h)
    (union (heap-node-left h) (heap-node-right h)))

  (define (get x h)
    (let ([cmp (heap-compare h)])
      (define (inner-get h s f)
        (if (empty? h)
            (f)
            (if=? (cmp x (heap-node-elm h))
                  (s (heap-node-elm h))
                  (inner-get (heap-node-left h) s
                             (lambda () (inner-get (heap-node-right h) s 
                                                   f))))))
      (inner-get h (lambda (x) x) (lambda () #f))))
  
  ;;;
  ;;; EXTRA OPERATIONS
  ;;;
  
  (define (delete* xs h)
    (foldl delete h xs))
  
  (define (elements h)
    (fold cons '() h))
  
  (define (fold f b h)
    (if (empty? h)
        b
        (fold f 
              (fold f 
                    (f (heap-node-elm h) b)
                    (heap-node-left h))
              (heap-node-right h))))
  
  (define (count x h)
    (let ([cmp (heap-compare h)])
      (fold (lambda (y s)
              (if=? (cmp x y)
                    (add1 s)
                    s))
            0 h)))
  
  (define (-heap . xs)
    (list->heap xs))
  
  (define (insert* xs h)
    (union (list->heap (heap-compare h) xs) h))
  
  (define list->heap
    ; time: O(n)
    (case-lambda 
      [(l)     (list->heap (current-compare) l)]
      [(cmp l) (let* ([e  (empty cmp)]
                      [hs (map (lambda (x) (insert x e)) l)])
                 ; (list heap) -> (list heap)
                 ;  merge adjacent pairs of heaps
                 (define (merge-pairs hs)
                   (cond
                     [(or (null? hs)
                          (null? (cdr hs))) hs]
                     [else (cons (union (car hs) (cadr hs))
                                 (merge-pairs (cddr hs)))]))
                 (if (null? hs)
                     e
                     (let loop ([hs hs])
                       ; merge adjacent pairs of heaps until one is left
                       (cond
                         [(null? hs)       '()]
                         [(null? (cdr hs)) (car hs)]
                         [else             (loop (merge-pairs hs))]))))]))

  ; select : set -> element
  (define (select s)
    (if (empty? s)
        (error 'select "can't select an element from an empty heap")
        (find-min s)))

  (define singleton
    (case-lambda 
      [(x)     (insert x (empty))]
      [(cmp x) (insert x (make-heap-empty cmp))]))
  
  (define (size h)
    ; NOTE: T(size)=O(n)
    (cond
      [(heap-empty? h) 0]
      [else            (+ (size (heap-node-left h))
                          1
                          (size (heap-node-right h)))]))
  
  ;;;
  ;;; support for srfi-42
  ;;;
  
  (define-syntax heap-ec
    (syntax-rules ()
      [(heap-ec cmp etc1 etc ...)
       (fold-ec (empty cmp) etc1 etc ... insert)]))
  
  (define-syntax :heap
    (syntax-rules (index)
      ((:heap cc var (index i) arg)
       (:parallel cc (:stack var arg) (:integers i)) )
      ((:heap cc var arg)
       (:do cc
            (let ())
            ((t arg))
            (not (empty? t))
            (let ((var (find-min t))))
            #t
            ((delete-min t)) ))))
  
  (define (:heap-dispatch args)
    (cond
      [(null? args)
       'heap]
      [(and  (heap? (car args)))
       (:generator-proc (:heap (car args)))]
      [else
       #f]))
  
  (:-dispatch-set! 
   (dispatch-union (:-dispatch-ref) :heap-dispatch))
  
  (require "signatures/heap-signature.scm")
  (provide-heap)
  
  )