
PLT Scheme Science Collection
Reference Manual

Edition 2.0 for Version 2.0

M. Douglas Williams

December 2005

Contents

1 Introduction 1
1.1 Routines Available in the Science Collection 2
1.2 The Science Collection is Free Software 2
1.3 Obtaining the Science Collection 2
1.4 No Warranty . 3

2 Using the Science Collection 4
2.1 An Example . 4
2.2 Loading Modules in the Science Collection 5
2.3 Graphics Modules . 6

3 Error Handling 7
3.1 Contracts . 7
3.2 Infinities and Not-a-Number . 9
3.3 Exceptions . 9

4 Mathematical Functions 10
4.1 Mathematical Constants . 10
4.2 Infinities and Not-a-Number . 10
4.3 Elementary Functions . 11
4.4 Testing the Sign of Numbers . 13
4.5 Approximate Comparisons of Real Numbers 13

5 Special Functions 14
5.1 Error Functions . 14

5.1.1 Error Function . 14
5.1.2 Complementary Error Function 15
5.1.3 Hazard Function . 16

5.2 Gamma Functions . 17
5.2.1 Gamma Function . 18
5.2.2 Regulated Gamma Function 20
5.2.3 Factorial Function . 21
5.2.4 Double Factorial Function 21
5.2.5 Binomial Coefficient Function 21

i

CONTENTS ii

5.3 Psi Functions . 22
5.3.1 Psi (Digamma) Functions 22
5.3.2 Psi-1 (Trigamma) Functions 23
5.3.3 Psi-n (Polygamma) Function 24

5.4 Zeta Functions . 25
5.4.1 Riemann Zeta Functions 26
5.4.2 Riemann Zeta Functions Minus One 26
5.4.3 Hurwitz Zeta Function . 27
5.4.4 Eta Functions . 28

6 Random Number Generation 30
6.1 The SRFI 27 Specification . 30
6.2 Additional Random Number Functionality 32

6.2.1 The current-random-source Parameter 32
6.2.2 Uniform Random Numbers 33
6.2.3 Miscellaneous Functions 34
6.2.4 Random Source Vectors 34

6.3 Examples . 34

7 Random Number Distributions 37
7.1 The Beta Distribution . 37

7.1.1 Random Variates from the Beta Distribution 38
7.1.2 Beta Distribution Density Functions 38
7.1.3 Beta Distribution Graphics 38

7.2 The Bivariate Gaussian Distribution 39
7.2.1 Random Variates from the Bivariate Gaussian Distribution 40
7.2.2 Bivariate Gaussian Distribution Density Functions 41
7.2.3 Bivariate Gaussian Distribution Graphics 42

7.3 The Chi-Squared Distribution . 42
7.3.1 Random Variates from the Chi-Squared Distribution . . . 42
7.3.2 Chi-Squared Distribution Density Functions 44
7.3.3 Chi-Squared Distribution Graphics 44

7.4 The Exponential Distribution . 45
7.4.1 Random Variates from the Exponential Distribution . . . 46
7.4.2 Exponential Distribution Density Functions 46
7.4.3 Exponential Distribution Graphics 46

7.5 The F-Distribution . 48
7.5.1 Random Variates from the F-Distribution 48
7.5.2 F-Distribution Density Functions 49
7.5.3 F-Distribution Graphics 50

7.6 The Flat (Uniform) Distribution 50
7.6.1 Random Variates from the Flat Distribution 50
7.6.2 Flat Distribution Density Functions 52
7.6.3 Flat Distribution Graphics 53

7.7 The Gamma Distribution . 53
7.7.1 Random Variates from the Gamma Distribution 53

CONTENTS iii

7.7.2 Gamma Distribution Density Functions 54
7.7.3 Gamma Distribution Graphics 55

7.8 The Gaussian Distribution . 56
7.8.1 Random Variates from the Gaussian Distribution 56
7.8.2 Gaussian Distribution Density Functions 59
7.8.3 Gaussian Distribution Graphics 60

7.9 The Gaussian Tail Distribution 61
7.9.1 Random Variates from the Gaussian Tail Distribution . . 61
7.9.2 Gaussian Tail Distribution Density Functions 63
7.9.3 Gaussian Tail Distribution Graphics 64

7.10 The Log Normal Distribution . 66
7.10.1 Random Variates from the Log Normal Distribution . . . 67
7.10.2 Log Normal Distribution Density Functions 67
7.10.3 Log Normal Distribution Graphics 67

7.11 The Pareto Distribution . 69
7.11.1 Random Variates from the Pareto Distribution 69
7.11.2 Pareto Distribution Density Functions 70
7.11.3 Pareto Distribution Graphics 71

7.12 The T-Distribution . 71
7.12.1 Random Variates from the T-Distribution 71
7.12.2 T-Distribution Density Functions 72
7.12.3 T-Distribution Graphics 73

7.13 The Triangular Distribution . 74
7.13.1 Random Variates from the Triangular Distribution 75
7.13.2 Triangular Distribution Density Functions 75
7.13.3 Triangular Distribution Graphics 76

7.14 The Bernoulli Distribution . 78
7.14.1 Random Variates from the Bernoulli Distribution 78
7.14.2 Bernoulli Distribution Density Functions 78
7.14.3 Bernoulli Distribution Graphics 79

7.15 The Binomial Distribution . 80
7.15.1 Random Variates from the Binomial Distribution 81
7.15.2 Binomial Distribution Density Functions 81
7.15.3 Binomial Distribution Graphics 81

7.16 The Geometric Distribution . 82
7.16.1 Random Variates from the Geometric Distribution 83
7.16.2 Geometric Distribution Density Functions 84
7.16.3 Geometric Distribution Graphics 84

7.17 The Logarithmic Distribution . 85
7.17.1 Random Variates from the Logarithmic Distribution . . . 86
7.17.2 Logarithmic Distribution Density Functions 86
7.17.3 Logarithmic Distribution Graphics 86

7.18 The Poisson Distribution . 87
7.18.1 Random Variates from the Poisson Distribution 88
7.18.2 Poisson Distribution Density Functions 89
7.18.3 Poisson Distribution Graphics 89

CONTENTS iv

7.19 The General Discrete Distribution 91
7.19.1 Creating Discrete Distributions 91
7.19.2 Random Variates from a Discrete Distribution 91
7.19.3 Discrete Distribution Density Functions 92
7.19.4 General Discrete Distribution Graphics 92

8 Statistics 94
8.1 Mean, Standard Deviation, and Variance 94
8.2 Absolute Deviation . 95
8.3 Higher Moments (Skewness and Kurtosis) 95
8.4 Autocorrelation . 96
8.5 Covariance . 97
8.6 Weighted Samples . 98
8.7 Maximum and Minimum . 101
8.8 Median and Percentiles . 102
8.9 Example . 103

9 Histograms 107
9.1 1D Histograms . 107

9.1.1 Creating 1D Histograms 107
9.1.2 Updating and Accessing 1D Histogram Elements 108
9.1.3 1D Histogram Statistics 109
9.1.4 1D Histogram Graphics 110
9.1.5 Examples . 111

9.2 2D Histograms . 112
9.2.1 Creating 2D Histograms 113
9.2.2 Updating and Accessing 2D Histogram Elements 113
9.2.3 2D Histogram Statistics 115
9.2.4 2D Histogram Graphics 116
9.2.5 Example . 117

9.3 Discrete Histograms . 117
9.3.1 Creating Discrete Histograms 119
9.3.2 Updating and Accessing Discrete Histogram Elements . . 119
9.3.3 Discrete Histogram Statistics 120
9.3.4 Discrete Histogram Graphics 121
9.3.5 Examples . 121

10 Ordinary Differential Equations 124
10.1 Defining the ODE System . 124
10.2 Stepping Functions . 125
10.3 Adaptive Step-Size Control . 126
10.4 Evolution . 128
10.5 Examples . 129

CONTENTS v

11 Chebyshev Approximations 135
11.1 The chebyshev-series Structure 135
11.2 Creation and Calculation of Chebyshev Series 136
11.3 Chebyshev Series Evaluation . 136
11.4 Examples . 136

A GNU Lesser General Public License (LGPL) 140

B SRFI 27: Sources of Random Bits 151

Bibliography 162

Index 163

List of Figures

2.1 Histogram of Sum of Two Dice 5

5.1 Plot of Error Function on [4, 4] 15
5.2 Plot of Complementary Error Function on [4, 4] 16
5.3 Plot of Hazard Function on [−5, 10] 17
5.4 Plot of Gamma Function on (0, 6] 19
5.5 Plot of Gamma Function on (−1, 0) 20
5.6 Plot of Psi (Digamma) Function on (0, 5] 23
5.7 Plot of Psi-1 (Trigamma) Function on (0, 5] 24
5.8 Plot of Psi-n (Polygamma), n = 3, Function on (0, 5] 25
5.9 Plot of Reimann Zeta Function on [−5, 5] 27
5.10 Plot of Hurwitz Zeta Function, q = 2.0, on (1, 5] 28
5.11 Plot of Eta Function on [−10, 10] 29

6.1 Histogram of Uniform Random Numbers 35
6.2 Histogram of Uniform Random Integers 36

7.1 Histogram of Random Variates from Beta (2.0, 3.0) 39
7.2 Plot of Probability Density for Beta(2.0, 3.0) 40
7.3 Histogram of Random Variates from Bivariate Gaussian (1.0, 1.0,

0.0) . 41
7.4 Plot of Probability Density for Bivariate Gaussian (1.0, 1.0, 0.0) 43
7.5 Histogram of Random Variates from Chi-Squared (3.0)) 44
7.6 Plot of Probability Density for Chi-Squared (3.0) 45
7.7 Histogram of Random Variates from Exponential (1.0)) 47
7.8 Plot of Probability Density for Exponential (1.0) 48
7.9 Histogram of Random Variates from F-Distribution (2.0, 3.0)) . . 49
7.10 Plot of Probability Density for F-Distribution (2.0, 3.0) 51
7.11 Histogram of Random Variates from Flat (Uniform) (1.0, 4.0) . . 52
7.12 Plot of Probability Density for Flat (Uniform) (1.0, 4.0) 54
7.13 Histogram of Random Variates from Gamma (3.0, 3.0) 55
7.14 Plot of Probability Density for Gamma (3.0, 3.0) 56
7.15 Histogram of Random Variates from Gaussian (Normal) (10.0, 2.0) 57
7.16 Histogram of Random Variates from Unit Gaussian (Normal) . . 58

vi

LIST OF FIGURES vii

7.17 Plot of Probability Density for Gaussian (Normal) (10.0, 2.0) . . 61
7.18 Plot of Probability Density for Unit Gaussian (Normal) 62
7.19 Histogram of Random Variates from Gaussian Tail (16.0, 10.0, 2.0) 63
7.20 Histogram of Random Variates from Unit Gaussian Tail (3.0) . . 64
7.21 Plot of Probability Density for Gaussian Tail (16.0, 10.0, 2.0) . . 65
7.22 Plot of Probability Density for Unit Gaussian Tail (3.0) 66
7.23 Histogram of Random Variates from Log Normal (0.0, 1.0) . . . 68
7.24 Plot of Probability Density for Log Normal (0.0, 1.0) 69
7.25 Histogram of Random Variates from Pareto (1.0, 1.0) 70
7.26 Plot of Probability Density for Pareto (1.0, 1.0) 72
7.27 Histogram of Random Variates from T-Distribution (1.0) 73
7.28 Plot of Probability Density for T-Distribution (1.0) 74
7.29 Histogram of Random Variates from Triangular (1.0, 4.0, 2.0) . . 76
7.30 Plot of Probability Density for Triangular (1.0, 4.0, 2.0) 77
7.31 Histogram of Random Variates from Bernoulli (0.6) 79
7.32 Plot of Probability Density for Bernoulli (0.6) 80
7.33 Histogram of Random Variates from Binomial (0.5, 20) 82
7.34 Plot of Probability Density for Binomial (0.5 20) 83
7.35 Histogram of Random Variates from Geometric (0.5) 84
7.36 Plot of Probability Density for Geometric (0.5) 85
7.37 Histogram of Random Variates from Logarithmic (0.5) 87
7.38 Plot of Probability Density for Logarithmic (0.5) 88
7.39 Histogram of Random Variates from Poisson (10.0) 89
7.40 Plot of Probability Density for Poisson (10.0) 90
7.41 Histogram of Random Variates from a Discrete Distribution . . . 92
7.42 Plot of Probability Density for a General Discrete Distribution . 93

9.1 Histogram of Random Variates from Unit Gaussian (Normal) . . 111
9.2 Scaled Histogram of Random Variates from Exponential (1.0)) . 112
9.3 Histogram of Random Variates from Bivariate Gaussian (1.0, 1.0,

0.0) . 118
9.4 Histogram of Random Variates from Poisson (10.0) 122
9.5 Histogram of Random Variates from Logarithmic (0.5) 123

10.1 ODE Example 1 Plot of y0 . 131
10.2 ODE Example 1 Plot of y1 . 132
10.3 ODE Example 2 Plot of y0 . 133
10.4 ODE Example 2 Plot of y1 . 134

11.1 Chebyshev Series Order 10 . 138
11.2 Chebyshev Series Order 40 . 139

List of Tables

4.1 Mathematical Constants . 11

viii

Chapter 1

Introduction

The PLT Scheme Science Collection is a collection of modules that provide
functions for numerical computing. The structure of the science collection and
many of the underlying algorithms were inspired by the GNU Scientific Library
(GSL)[2]. The functions are written entirely in PLT Scheme[3] and present a
true Scheme look-and-feel throughout. The source code is distributed with the
science collection and licensed under the GNU Lesser General Public License
(LGPL)[1].

The motivation behind the PLT Scheme Science Collection is to provide a
numerical framework for knowledge-based simulation in PLT Scheme. Indeed,
many of the routines were originally developed as part of the PLT Scheme
Simulation Collection[8]. It was noted that much of the functionality (e.g.,
random number generation, random distributions, histograms and statistics) did
not depend on, or could be separated from, the underlying simulation engine.
When this was done, it was further noted that this functionality represented a
subset of the functionality available in the GSL. At that point, it was decided
to use the structure and, to the extent practical, the algorithms of the GSL as
a reference model. Thus, the PLT Scheme Science Collection was born.

This reference manual is based on the GNU Scientific Library Reference
Manual[2]. Because of the differences between C and PLT Scheme, and the
fundamental differences between the underlying numeric models of each, the
presentation of the functions is different here than in the GSL Reference Manual.
We also rely more on the graphical representation of results, using the plot
collection distributed with PLT Scheme (PLoT Scheme)[7].

We are indebted to Dr. M. Galassi and Dr. J. Theiler of Los Alamos National
Laboratory and the others who have contributed to the development of the GNU
Scientific Library (GSL). Any weaknesses in the PLT Scheme Science Collection
are our own and must not be construed as having origins in the GSL.

1

CHAPTER 1. INTRODUCTION 2

1.1 Routines Available in the Science Collection

The PLT Scheme Science Collection covers a range of topics in numerical com-
puting. Functions are available for the following areas:1

• Mathematical Constants and Functions

• Special Functions

• Random Numbers

• Random Distributions

• Statistics

• Histograms

• Ordinary Differential Equations

• Chebyshev Approximations

The use of these functions is described in this manual. Each chapter provides
detailed definitions of the functions, with example code.

1.2 The Science Collection is Free Software

The PLT Scheme Science Collection is free software – this means that anyone is
free to use it and to redistribute it in other free programs. The science collection
is not in the public domain – it is copyrighted and there are conditions on its
distribution. Specifically, the PLT Scheme Science Collection is distributed
under the GNU Lesser General Public License (LGPL)[1]. A copy of the LGPL
is provided as Appendix A of this document.

1.3 Obtaining the Science Collection

The preferred method for obtaining the PLT Scheme Science Collection is via
the PLaneT Package Repository (PLaneT), PLT Scheme’s centralized pack-
age distribution system[6]. The PLaneT identifier for the PLT Scheme Science
Collection, Version 2.0 (or later) is ("williams" "science.plt" 2 0). PLT
Scheme will automatically download and install the science collection from the
PLaneT server. See Chapter 2 for an example.

Note that Version 2.0 of the PLT Scheme Science Collection requires PLT
Scheme Version 300 or higher.

1This is only a fraction of the areas supported by the GSL. For a complete reference of
the numerical computing areas supported by the GSL, please refer to the GSL Reference
Manual[2].

CHAPTER 1. INTRODUCTION 3

1.4 No Warranty

The PLT Scheme Science Collection is distributed in the hope that it will be
useful, but WITHOUT ANY WARRANTY; without even the implied warranty
of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. It
is your responsibility to validate the behavior of the software and their accuracy
using the source code provided. See the GNU Lesser General Public License
(LGPL)[1] for more details.

Chapter 2

Using the Science
Collection

This chapter describes how to use the PLT Scheme Science Collection and in-
troduces its conventions.

2.1 An Example

The following code demonstrates the use of the PLT Scheme Science Collection
by plotting a histogram of 10,000 trials of rolling two dice.

(require (planet "random-source.ss"
("williams" "science.plt" 2 0)))

(require (planet "discrete-histogram-with-graphics.ss"
("williams" "science.plt" 2 0)))

(let ((s (make-random-source))
(h (make-discrete-histogram)))

(random-source-randomize! s)
(do ((i 0 (+ i 1)))

((= i 10000) (void))
(let ((die1 (+ (random-uniform-int 6) 1))

(die2 (+ (random-uniform-int 6) 1)))
(discrete-histogram-increment! h (+ die1 die2))))

(discrete-histogram-plot h "Histogram of Sum of Two Dice"))

Figure 2.1 shows an example of the resulting histogram.

4

CHAPTER 2. USING THE SCIENCE COLLECTION 5

Figure 2.1: Histogram of Sum of Two Dice

2.2 Loading Modules in the Science Collection

The PLT Scheme Science Collection is a collection of modules each of which
provides a specific area of functionality in numerical computing. Typical user
code will only load the modules it requires using the require special form.

For example, the code in Section 2.1 requires two of the modules from the
science collection: random-source and discrete-histogram-with-graphics.
This is specified using the following:

(require (planet "random-source.ss"
("williams" "science.plt" 2 0)))

(require (planet "discrete-histogram-with-graphics.ss"
("williams" "science.plt" 2 0)))

Each of these statements will load the corresponding module from the science
collection – assumming they are not already loaded – and make it available for
use. PLT Scheme will automatically download and install the science collection
from the PLaneT server as needed.

There are two sub-collections of the science collection. These are:

• special-functions

• random-distributions

CHAPTER 2. USING THE SCIENCE COLLECTION 6

Loading modules from one of these sub-collections requires that the sub-
collection also be specified when using the require special form. For example,
to load the module for the Gaussian random distribution, the following is used:

(require (planet "gaussian.ss" ("williams" "science.plt" 2 0)
"random-distributions"))

As a shortcut, the entire science collection can be loaded using one of the
following, depending on whether or not the graphics routines are needed:

(require (planet "science.ss" ("williams" "science.plt" 2 0)))
(require (planet "science-with-graphics.ss"

("williams" "science.plt" 2 0)))

2.3 Graphics Modules

Support for the graphical functions within the modules of the science collection
has been separated from the fundamental numerical computing functionality
of the modules. This facilitates the use of the numerical computing functions
in non-graphical environments or when alternative graphical presentations are
desired.

By convention, when graphical functions are included for a specific numerical
computing area, there are three modules that provide the functions:

• module – the basic numerical computing functions

• module-graphics – the graphical functions

• module-with-graphics – both the basic numerical computing and graph-
ical functions

In general, either the module or module-with-graphicsmodule is loaded. How-
ever, the module-graphics module can be loaded when only the graphical rou-
tines are being referenced.1

For example, the code in Section 2.1 requires both the basic numerical com-
puting and graphical functions for the discrete histogram functionality. There-
fore, it loads the discrete-histogram-with-graphicsmodule using the form:

(require (planet "discrete-histogram-with-graphics.ss"
("williams" "science.plt" 2 0)))

The graphical routines are implemented using the plot collection provided
with PLT Scheme (PLoT Scheme)[7]. The plot collection is, in turn, imple-
mented using MrEd[5]. Both of these modules are required to be present to use
the graphical functions.2

1This might be used in implementing higher-level graphical interfaces.
2This is normally the case for PLT Scheme Version 2.07 and higher.

Chapter 3

Error Handling

This chapter describes how error handling is performed in the PLT Scheme
Science Collection and its error handling conventions.

3.1 Contracts

In PLT Scheme, a contract defines and enforces the interface to (and from) a
function. Contracts are defined in Chapter 13: contract.ss: Contracts in the
PLT MzLib: Libraries Manual[4].

The PLT Scheme Science Collection uses contracts to define and enforce the
interfaces for all of the functions provided by the modules in the collection. This
ensures that all calls to these functions are checked for the proper number and
type of arguments (and results) as well as range checking and inter-argument
constraints where practical.

All of the function descriptions in this manual include a specification of the
contract for the function.

The following examples show some of the different contract specifications
for functions and how to interpret them. All of these examples are from the
statistics.ss file.

Fixed Number of Arguments with a Single Result

Example: mean from the statistics.ss file.

Function: (mean data)
Contract: (-> (vectorof real?) real?)

The contract specifies a function with one argument, which must match the
contract (vectorof real?), and returns a single value, which must match the
contract real?.

> (require (planet "statistics.ss" ("williams" "science.plt" 2 0)))

> (mean #(1 2 3 4))

7

CHAPTER 3. ERROR HANDLING 8

2.5

> (mean #(1 2 3 ’a))

6:3: top-level broke the contract (-> (vectorof real?) real?) it had

with (planet "statistics.ss" ("williams" "science.plt" 2 0)) on mean;

expected <(vectorof real?)>, given: #4(1 2 3 ’a)

Multiple Lambda Forms (case-lambda)

Example: variance from the statistics.ss file.

Function: (variance data mu)

Function: (variance data)

Contract: (case->

(-> (vectorof real?) real? (>=/c 0.0))

(-> (vectorof real?) (>=/c 0.0)))

The contract specifies multiple lambda forms using case->. The first case specifies
a function with two arguments, which must match the contracts (vectorof real?)

and real?, and returns a single value, which must match the contract (>=/c 0.0).
The second case specifies a function with a single arguemnt, which must match the
contract (vectorof real?), and returns a single value, which must match the contract
(>=/c 0.0).

> (require (planet "statistics.ss" ("williams" "science.plt" 2 0)))

> (variance #(1 2 3 4))

1.6666666666666665

> (variance #(1 2 3 4) 2.5)

1.6666666666666665

> (variance #(1 2 3 4) ’a)

8:3: top-level broke the contract

(case->

(-> (vectorof real?) real? (>=/c 0.0))

(-> (vectorof real?) (>=/c 0.0)))

it had with (planet "statistics.ss" ("williams" "science.plt" 2 0))

on variance; expected <real?>, given: a

Interparameter Constraints

Example: weighted-mean from the statistics.ss file.

Function: (weighted-mean w data)

Contract: (->r ((w (vectorof real?))

(data (and/c (vectorof real?)

(lambda (x)

(= (vector-length w)

(vector-length data))))))

real?)

The contract specifies a function that takes two arguments: the first argument must
be a vector of real numbers and the second must be a vector of real number whose
length is the same as the first argument; and the function returns one real result.

CHAPTER 3. ERROR HANDLING 9

> (require (planet "statistics.ss" ("williams" "science.plt" 2 0)))

> (weighted-mean #(1 2 3 4) #(4 3 2 1))

2.0

> (weighted-mean #(1 2 3 4) #(4 3 2))

6:3: top-level broke the contract

(->r ((w ...) (data ...)) ...)

it had with (planet "statistics.ss" ("williams" "science.plt" 2 0))

on weighted-mean; expected <(and/c (vectorof real?)

...\0\statistics.ss:119:23)>, given: #3(4 3 2)

3.2 Infinities and Not-a-Number

PLT Scheme provides +inf.0 (positive infinity), -inf.0 (negative infinity), +nan.0

(not-a-number), and -nan.0 (same as +nan.0). In general, these are contagious and
are passed as the result in subsequent numerical computations. However, operations
with infinities and zero (both exact and inexact) can give non-intuitive results. For
example:

• (* 0 +inf.0) → 0

• (/ 0 +inf.0) → 0

• (/ 0 -inf.0) → 0

• (* 0.0 +inf.0) → +nan.0

• (/ 0.0 -inf.0) → -0.0

(Note that some of these may break näıve algorithms.)
The PLT Scheme Science Collection uses +inf.0 to represent overflow and -inf.0

to represent underflow in numerical computations. This is used in cases where the
arguments to the function are within the range of the function, but the result is too
large or too small to be represented. For example, (gamma 200.0) → +inf.0.

The PLT Scheme Science Collection uses +nan.0 for domain errors – where the
arguments match the contract, but the value cannot be computed. For example,
(gamma 0.0) → +nan.0.

3.3 Exceptions

In PLT Scheme, an exception is a change in control flow, typically as the result of an
error. Exceptions are defined in Chapter 6 Execeptions and Control Flow in the PLT
MzScheme Language Manual[3].

The PLT Scheme Science Collection may raise exceptions for errors other than
underflow, overflow, and domain errors. Also, underlying procedures and/or modules
used by the science collection may raise exceptions as may errors in the implementa-
tion.

Chapter 4

Mathematical Functions

This chapter describes the basic mathematical constants and functions provided by
the PLT Scheme Science Collection.

The constants and functions described in this chapter are defined in the math.ss

file in the science collection and are made available using the form:

(require (planet "math.ss" ("williams" "science.plt" 2 0)))

4.1 Mathematical Constants

Table 5.1 shows the mathematical constants defined by the PLT Scheme Science Col-
lection.

4.2 Infinities and Not-a-Number

PLT Scheme provides +inf.0 (positive infinity), -inf.0 (negative infinity), +nan.0

(not a number), and -nan.0 (same as +nan.0) as inexact numerical constants. The
following functions are provided as a convenience for checking for infinities and not-a-
number.

nan?

Function: (nan? x)

Contract: (-> any? boolean?)

This function returns true, #t, if x is not-a-number (i.e., equivalent to +nan.0 or,
therefore, -nan.0), and false, #f, otherwise. Note that this is not the same as
(not (number? x)), which is true if x is not a number.

infinite?

Function: (infinite? x)

Contract: (-> any? (union (integer-in -1 1) boolean?))

10

CHAPTER 4. MATHEMATICAL FUNCTIONS 11

e The base of exponentials, e
log2e The base 2 logarithm of e, log2e
log10e The base 10 logarithm of e, log10e

sqrt2 The square root of 2,
√

2

sqrt1/2 The square root of 1
2 ,

√
1
2

sqrt3 The square root of 3,
√

3
pi The constant π
pi/2 π divided by 2, π

2

pi/4 π divided by four, π
4

sqrtpi The square root of π,
√

π

2/sqrtpi 2 divided by the square root of π, 2√
π

1/pi The reciprocal of π, 1
π

2/pi Twice the reciprocal of π, 2
π

ln10 The natural log of 10, ln 10
ln2 The natural log of 2, ln 2
lnpi The natural log of π, ln π
euler Euler’s constant, γ

Table 4.1: Mathematical Constants

This function returns 1 if x is positive infinity (i.e., equivalent to +inf.0), −1 if
x is negative infinity (i.e., equivalent to -inf.0), and false, #f, otherwise. Note
that (finite? x) is not equivalent to (not (infinite? x)), since both finite? and
infinite? return false for anything that is not a real number.

finite?

Function: (finite? x)

Contract: (-> any? boolean?)

This function returns true, #t, if x is a finite real number, and false, #f otherwise.
Note that (finite? x) is not equivalent to (not (infinite? x)), since both finite?

and infinite? return false for anything that is not a real number.

4.3 Elementary Functions

The following functions provide some elementary mathematical functions that are not
provided by PLT Scheme.

log1p

Function: (log1p x)

Contract: (-> real? number?)

This function computes the value of log(1 + x) in a way that is accurate for small x.

CHAPTER 4. MATHEMATICAL FUNCTIONS 12

expm1

Function: (expm1 x)

Contract: (-> real? real?)

This function computes the value of expx − 1 in a way that is accurate for small x.

hypot

Function: (hypot x y)

Contract: (-> real? real? real?)

This function computes the value of
√

x2 + y2 in a way that avoids overflow.

acosh

Function: (acosh x)

Contract: (-> real? real?)

This function computes the value of the hyperbolic arccosine, arccosh, of x.

asinh

Function: (asinh x)

Contract: (-> real? real?)

This function computes the value of the hyperbolic arcsine, arcsinh, of x.

atanh

Function: (atahh x)

Contract: (-> real? real?)

This function computes the value of the hyperbolic arctangent, arctanh, of x.

ldexp

Function: (ldexp x e)

Contract: (-> real? integer? real?)

This function computes the value of x × 2e.

frexp

Function: (frexp x)

Contract: (-> real? (values real? integer?))

This function splits the real number x into a normalized fraction f and exponent e,
such that x = f ×2e and 0.5 ≤ f < 1. The function returns f and e as multiple values.
If x is zero, both f and e are returned as zero.

CHAPTER 4. MATHEMATICAL FUNCTIONS 13

4.4 Testing the Sign of Numbers

sign

Function: (sign x)

Contract: (-> real? (integer-in -1 1))

This function returns the sign of x : 1 if x ≥ 0 and −1 if x < 0. Note that the sign of
zero is positive, regardless of its floating-point sign bit.

4.5 Approximate Comparisons of Real Numbers

It is sometimes useful to be able to compare two real (in particular, floating-point)
numbers approximately, to allow for rounding and truncation errors. The following
function implements the approximate floating-point comparison algorithm proposed
by D.E. Knuth in Section 4.2.2 of Seminumerical Algorithms (3rd edition).

fcmp

Function: (fcmp x y epsilon)

Contract: (-> real? real? real? (integer-in -1 1))

This function determines whether x and y are approximately equal to a relatively
accuracy, epsilon. The relative accuracy is measured using an interval of 2 × delta,
where delta = 2k × epsilon and k is the maximum base 2 exponent of x and y as
computed by the function frexp. If x and y lie within this interval, they are considered
approximately equal and the function returns 0. Otherwise, if x < y, the function
returns −1, or if x > y, the function returns 1.

The implementation of this function is based on the package fcmp by T.C. Belding.

Chapter 5

Special Functions

This chapter describes the special functions provided by the PLT Scheme Science
Collection.

The functions described in this chapter are defined in the special-functions sub-
collection of the science collection. The entire special-functions sub-collection can be
made available using the form:

(require (planet "special-functions.ss"

("williams" "science.plt" 2 0)))

The individual modules in the special-functions sub-collection can also be made
available as described in the sections below.

5.1 Error Functions

The error function is described in Abramowitz and Stegun, Chapter 7. The functions
are defined in the error.ss file in the special-functions sub-collection of the science
collection and are made available using the form:

(require (planet "error.ss" ("williams" "science.plt" 2 0)

"special-functions"))

5.1.1 Error Function

erf

Function: (erf x)

Contract: (-> real? (real-in -1.0 1.0))

This function computes the error function:

erf(x) =
2√
π

∫ x

0

e−t2dt

Example: Plot of (erf x) on the interval [4, 4].

14

CHAPTER 5. SPECIAL FUNCTIONS 15

(require (planet "error.ss" ("williams" "science.plt" 2 0)

"special-functions"))

(require (lib "plot.ss" "plot"))

(plot (line erf)

(x-min -4) (x-max 4)

(y-min -1) (y-max 1)

(title "Error Function, erf(x)"))

Figure 5.1 shows the resulting plot.

Figure 5.1: Plot of Error Function on [4, 4]

5.1.2 Complementary Error Function

erfc

Function: (erfc x)

Contract: (-> real? (real-in 0.0 2.0))

This function computes the complementary error function:

erfc(x) = 1 − erf(x) =
2√
π

∫ ∞

x

e−t2dt

CHAPTER 5. SPECIAL FUNCTIONS 16

Example: Plot of (erfc x) on the interval [4, 4].

(require (planet "error.ss" ("williams" "science.plt" 2 0)

"special-functions"))

(require (lib "plot.ss" "plot"))

(plot (line erfc)

(x-min -4) (x-max 4)

(y-min 0) (y-max 2)

(title "Complementary Error Function, erfc(x)"))

Figure 5.2 shows the resulting plot.

Figure 5.2: Plot of Complementary Error Function on [4, 4]

5.1.3 Hazard Function

The hazard function for the normal distribution, also known as the inverse Mill’s ratio,
is the ratio of the probability function, P (x), to the survival function, S(x), and is
defined as:

h(x) =
P (x)

S(x)
=

√
2πe

x2
2

erfc(x
√

2)

It decreases rapidly as x approaches −∞ and asymptopes to h(x) x as x approaches
+∞.

CHAPTER 5. SPECIAL FUNCTIONS 17

hazard

Function: (hazard x)

Contract: (-> real? (>=/c 0.0))

This function computes the hazard function for the normal distribution.

Example: Plot of (hazard x) on the interval [−5, 10].

(require (planet "error.ss" ("williams" "science.plt" 2 0)

"special-functions"))

(require (lib "plot.ss" "plot"))

(plot (line hazard)

(x-min -5) (x-max 10)

(y-min 0) (y-max 10)

(title "Hazard Function, hazard(x)"))

Figure 5.3 shows the resulting plot.

Figure 5.3: Plot of Hazard Function on [−5, 10]

5.2 Gamma Functions

The gamma functions are defined in the gamma.ss file in the special-functions sub-
collection of the science collection and are made available using the form:

CHAPTER 5. SPECIAL FUNCTIONS 18

(require (planet "gamma.ss" ("williams" "science.plt" 2 0)

"special-functions"))

Note that the gamma functions (Section 5.2), psi functions (Section 5.3), and the
zeta functions (Section 5.4) are defined in the same module, gamma.ss. This is because
their definitions are interdependent and PLT Scheme does not allow circular module
dependencies.

5.2.1 Gamma Function

The gamma function is defined by the integral:

Γ(x) ≡
∫ ∞

0

tx−1e−tdt

It is related to the factorial function by Γ(n) = (n− 1)! for positive integer n. Further
information on the gamma function can be found in Abramowitz & Stegun, Chapter
6.

gamma

Function: (gamma x)

Contract: (-> real? real?)

This function computes the gamma function, Γ(x), subject to x not being a negative
integer. The function is computed using the real Lanczos method. The maximum value
of x such that Γ(x) is not considered an overflow is given by the constant gamma-xmax
and is 171.0.

Example: Plot of (gamma x) on the interval (0, 6].

(require (planet "gamma.ss" ("williams" "science.plt" 2 0)

"special-functions"))

(require (lib "plot.ss" "plot"))

(plot (line gamma)

(x-min 0.001) (x-max 6)

(y-min 0) (y-max 120)

(title "Gamma Function, gamma(x)"))

Figure 5.4 shows the resulting plot.

Example: Plot of (gamma x) on the interval (−1, 0).

(require (planet "gamma.ss" ("williams" "science.plt" 2 0)

"special-functions"))

(require (lib "plot.ss" "plot"))

(plot (line gamma)

(x-min -0.999) (x-max -0.001)

(y-min -120) (y-max 0)

(title "Gamma Function, gamma(x)"))

CHAPTER 5. SPECIAL FUNCTIONS 19

Figure 5.4: Plot of Gamma Function on (0, 6]

Figure 5.5 shows the resulting plot.

lngamma

Function: (lngamma x)

Contract: (-> real? real?)

This function computes the logarithm of the gamma function, log(Γ(x)), subject to x
not being a negative integer. For x < 0, the real part of log(Γ(x)) is returned, which
is equivalent to log(|Γ(x)|). The function is computed using the real Lanczos method.

lngamma-sgn

Function: (lngamma-sgn x)

Contract: (-> real? (values real? (integer-in -1 1))

This function computes the logarithm of the magnitude of the gamma function and its
sign, subject to x not being a negative integer, and returns them as multiple values.
The function is computed using the real Lanczos method. The value of the gamma
function can be reconstructed using the relation Γ(x) = sgn ∗ exp(resultlg), where
resultlg and sgn are the returned values.

CHAPTER 5. SPECIAL FUNCTIONS 20

Figure 5.5: Plot of Gamma Function on (−1, 0)

gamma-inv

Function: (gamma-inv x)

Contract: (-> real? real?)

This function computes the reciprocal of the gamma function, 1
Γ(x)

, using the real
Lanczos method.

5.2.2 Regulated Gamma Function

The regulated gamma function is given by

Γ∗(x) =
Γ(x)√

2π
xx− 1

2 e−x

gammastar

Function: (gammastar x)

Contract: (-> (>/c 0.0) real?)

This function computes the regulated gamma function, Γ∗(x), for x > 0.

CHAPTER 5. SPECIAL FUNCTIONS 21

5.2.3 Factorial Function

The factorial of a positive integer n, n!, is defined as n! = n × (n − 1) × . . . × 2 × 1.
By definition, 0! = 1. The factorial function is related to the gamma function by
n! = Γ(n + 1).

factorial

Function: (fact n)

Contract: (-> natural-number? (>/c 1.0))

This function computes the factorial of n, n!.

lnfact

Function: (lnfact n)

Contract: (-> natural-number? (>=/c 0.0))

This function computes the logarithm of the factorial of n, log(n!). The algorithm is
faster than computing ln gamma(n+ 1) via lngamma for n < 170, but defers for larger
n.

5.2.4 Double Factorial Function

The double factorial of n, n!!, is defined as n!! = n × (n − 2) × (n − 4) × By
definition, −1!! = 0!! = 1.

double-fact

Function: (double-fact n)

Contract: (-> natural-number? (>/c 1.0))

This function computes the double factorial of n, n!!.

lndouble-fact

Function: (lndouble-fact n)

Contract: (-> natural-number? (>=/c 0.0))

This function computes the logarithm of the double factorial of n, log(n!!).

5.2.5 Binomial Coefficient Function

The binomial coefficient, b choose m, is defined as:

n choose m =
n!

m! × (n − m)!

choose

Function: (choose n m)

Contract: (-> natural-number? natural-number? (>/c 1.0))

This function computes the binomial coefficient for n and m, n choose m.

CHAPTER 5. SPECIAL FUNCTIONS 22

lnchoose

Function: (lnchoose n m)

Contract: (-> natural-number? natural-number? (>/c 0.0))

This function computes the logarithm of the binomial coefficient for n and m,
log(n choose m).

5.3 Psi Functions

The psi functions are defined in gamma.ss in the special-functions sub-collection of the
science collection and are made available using the form:

(require (planet "gamma.ss" ("williams" "science.plt" 2 0)

"special-functions"))

Note that the gamma functions (Section 5.2), psi functions (Section 5.3), and zeta
functions (Section 5.4) are defined in the same module, gamma.ss. This is because
their definitions are interdependent and PLT Scheme does not allow circular module
dependencies.

5.3.1 Psi (Digamma) Functions

psi-int

Function: (psi-int n)

Contract: (-> (integer-in 1 +inf.0) real?)

This function computes the digamma function, ψ(n), for positive integer n. The
digamma function is also called the Psi function.

psi

Function: (psi x)

Contract: (-> real? real?)

This function returns the digamma function, ψ(x), for general x, x �= 0.

psi-1piy

Function: (psi-1piy y)

Contract: (-> real? real?)

This function computes the real part of the digamma function on the line 1 + iy,
Re[ψ(1 + iy)].

Example: Plot of (psi x) on the interval (0, 5].

(require (planet "gamma.ss" ("williams" "science.plt" 2 0)

"special-functions"))

(require (lib "plot.ss" "plot"))

CHAPTER 5. SPECIAL FUNCTIONS 23

(plot (line psi)

(x-min 0.001) (x-max 5)

(y-min -5) (y-max 5)

(title "Psi (Digamma) Function, psi(x)"))

Figure 5.6 shows the resulting plot.

Figure 5.6: Plot of Psi (Digamma) Function on (0, 5]

5.3.2 Psi-1 (Trigamma) Functions

psi-1-int

Function: (psi-1-int n)

Contract: (-> (integer-in 1 +inf.0) real?)

This function computes the trigamma function ψ′(n) for positive integer n.

psi-1

Function: (psi-1 x)

Contract: (-> real? real?)

This function computes the trigamma function ψ′(x) for general x.

Example: Plot of (psi-1 x) on the interval (0, 5].

CHAPTER 5. SPECIAL FUNCTIONS 24

(require (planet "gamma.ss" ("williams" "science.plt" 2 0)

"special-functions"))

(require (lib "plot.ss" "plot"))

(plot (line psi-1)

(x-min 0.005) (x-max 5)

(y-min 0) (y-max 5)

(title "Psi-1 (Trigamma) Function, psi-1(x)"))

Figure 5.7 shows the resulting plot.

Figure 5.7: Plot of Psi-1 (Trigamma) Function on (0, 5]

5.3.3 Psi-n (Polygamma) Function

psi-n

Function: (psi-n n x)

Contract: (-> natural-number? (>/c 0.0) real?)

This function computes the polygamma function ψm(x) for m >= 0, x > 0.

Example: Plot of (psi-n n x) on the interval (0, 5].

CHAPTER 5. SPECIAL FUNCTIONS 25

(require (planet "gamma.ss" ("williams" "science.plt" 2 0)

"special-functions"))

(require (lib "plot.ss" "plot"))

(plot (line (lambda (x) (psi-n 3 x)))

(x-min 0.05) (x-max 5)

(y-min 0) (y-max 10)

(title "Psi-n (Polygamma) Function, psi-n(3, x)"))

Figure 5.8 shows the resulting plot.

Figure 5.8: Plot of Psi-n (Polygamma), n = 3, Function on (0, 5]

5.4 Zeta Functions

The Riemann zeta function is defined in Abramowitz and Stegun, Section 23.2. The
zeta functions are defined in the gamma.ss file in the special-functions sub-collection
of the science collection and are made available using the form:

(require (lib "gamma.ss" "science" "special-functions"))

Note that the gamma functions (Section 5.2), psi functions (Section 5.3), and zeta
functions (Section 5.4) are defined in the same module, gamma.ss. This is because

CHAPTER 5. SPECIAL FUNCTIONS 26

their definitions are interdependent and PLT Scheme does not allow circular module
dependencies.

5.4.1 Riemann Zeta Functions

The Riemann zeta function is defined by the infinite sum

ζ(s) =

∞∑
k=1

k−s

zeta-int

Function: (zeta-int n)

Contract: (-> integer? real?)

This function computes the Reimann zeta function ζ(n) for integer n, n �= 1.

zeta

Function: (zeta s)

Contract: (-> real? real?)

This function computes the Reimann zera function ζ(s) for arbitraty s, s �= 1.

Example: Plot of (zeta x) on the interval [−5, 5].

(require (planet "gamma.ss" ("williams" "science.plt" 2 0)

"special-functions"))

(require (lib "plot.ss" "plot"))

(plot (line zeta)

(x-min -5) (x-max 5)

(y-min -5) (y-max 5)

(title "Reimann Zeta Function, zeta(x)"))

Figure 5.9 shows the resulting plot.

5.4.2 Riemann Zeta Functions Minus One

For large positive arguments, the Reimann zeta function approaches one. In this
region the fractional part is interesting amd, therefore, we need a function to evaluate
it explicitly.

zetam1-int

Function: (zetam1-int n)

Contract: (-> integer? real?)

This function computes ζ(n) − 1 for integer n, n �= 1.

CHAPTER 5. SPECIAL FUNCTIONS 27

Figure 5.9: Plot of Reimann Zeta Function on [−5, 5]

zetam1

Function: (zetam1 s)

Contract: (-> real? real?)

This function computes ζ(n) − 1 for arbitrary s, s �= 1.

5.4.3 Hurwitz Zeta Function

The Hurwitx zeta function is defined by

ζ(s, q) =

∞∑
k=0

(k + q)−s

hzeta

Function: (hzeta s q)

Contract: (-> (>/c 1.0) (>/c 0.0) real?)

This function computes the Hurwitz zeta function ζ(s, q) for s > 1, q > 0.

Example: Plot of (hzeta x) on the interval (1, 5].

(require (planet "gamma.ss" ("williams" "science.plt" 2 0)

"special-functions"))

CHAPTER 5. SPECIAL FUNCTIONS 28

(require (lib "plot.ss" "plot"))

(plot (line (lambda (x) (hzeta x 2.0)))

(x-min 1.001) (x-max 5)

(y-min 0) (y-max 5)

(title "Hurwitz Zeta Function, hzeta(x, 2.0)"))

Figure 5.10 shows the resulting plot.

Figure 5.10: Plot of Hurwitz Zeta Function, q = 2.0, on (1, 5]

5.4.4 Eta Functions

The eta function is defined by

η(s) = (1 − 21−s)ζ(s)

eta-int

Function: (eta-int n)

Contract: (-> integer? real?)

This function computes the eta function η(n) for integer n.

CHAPTER 5. SPECIAL FUNCTIONS 29

eta

Function: (eta s)

Contract: (-> real? real?)

This function computes the eta function η(s) for arbitrary s.

Example: Plot of (eta x) on the interval [−10, 10].

(require (planet "gamma.ss" ("williams" "science.plt" 2 0)

"special-functions"))

(require (lib "plot.ss" "plot"))

(plot (line eta)

(x-min -10) (x-max 10)

(y-min -5) (y-max 5)

(title "Eta Function, eta(x)"))

Figure 5.11 shows the resulting plot.

Figure 5.11: Plot of Eta Function on [−10, 10]

Chapter 6

Random Number
Generation

The PLT Scheme Science Collection provides additional functionality to the PLT
Scheme implementation of SRFI 27 by Sabastian Egner, which, in turn, is a 54-bit
implementation of Pierre L’Ecuyer’s MRG32k3a pseudo-random number generator.1

The functions described in this chapter are defined in the random-source.ss file
in the science collection and are made available using the form:

(require (planet "random-source.ss" ("williams" "science.plt" 2 0)))

6.1 The SRFI 27 Specification

The following functions are defined in the SRFI specification and are, in turn, pro-
vided by the random-source module. The contract shows here are for documentation
purposes only – the PLT Scheme implementation of SRFI 27 does not define contracts
for its functions.

random-integer

Function: (random-integer n)

Contract: (-> (integer-in 1 +inf.0) natural-number?)

This functions returns the next integer in {0, . . . , n − 1} obtained from the default-

random-source. Subsequent results of this function appear to be independent uni-
formly distributed over the range {0, . . . , n − 1}. The argument n must be a positive
integer, otherwise an error is signaled.

random-real

Function: (random-real)

Contract: (-> (real-in 0.0 1.0))

1This is equivalent to the gsl-rmg-cmrg combined multiple recursive generator by L’Ecuyer
in the GSL.

30

CHAPTER 6. RANDOM NUMBER GENERATION 31

This function returns the next number, x, 0 < x < 1 obtained from default-random-

-source. Subsequent results of this procedure appear to be independently uniformly
distributed.

default-random-source

Variable: default-random-source

Defines the random source from which random-integer and random-real have been
derived using random-source-make-integers and random-source-make-reals. Note
that an assignment to default-random-source does not change the behavior of random
or random-integer; it is strongly recommended not to assign a new value to default-

-random-source.

make-random-source

Function: (make-random-source)

Contract: (-> random-source?)

This function creates a new random source. A random source created with make-ran-

dom-source represents a deterministic stream of random bits. Each random stream
obtained as (make-random-source) generates the same stream of values unless the
state is modified with one of the functions below.

random-source?

Function: (random-source? x)

Contract: (-> any? boolean?)

This function returns true, #t, if x is a random source, otherwise false, #f, is returned.

random-source-state-ref and random-source-state-set!

Function: (random-source-state-ref s)

Contract: (-> random-source? any)

Function: (random-source-state-set! s state)

Contract: (-> random-source? any? any)

These functions get and set the current state of the random source s. The implemen-
tation of the internal state of a random source is not defined.

random-source-randomize!

Function: (random-source-randomize! s)

Contract: (-> random-source? any)

This function makes an effort to set the state if the random source s to a truly random
state.

CHAPTER 6. RANDOM NUMBER GENERATION 32

random-source-pseudo-randomize!

Function: (random-source-pseudo-randomize! s i j)

Contract: (-> random-source? natural-number? natural-number> any)

This function changes the state of the random stream s into the initial state of the
(i, j)th independent random source, where i and j are non-negative integers. This
procedure provides a mechanism to obtain a large number of independent random
sources, indexed by two integers. In contrast to random-source-randomize!, this
procedure is entirely deterministic.

random-source-make-integers

Function: (random-source-make-integers s)

Contract: (-> random-source? procedure?)

This function returns a procedure to generate random integers using the random source
s. The resulting procedure takes a single argument n, which must be a positive inte-
ger, and returns the next independent uniformly distributed integer from the interval
{0, . . . , n − 1} by advancing the state of the random source s.

random-source-make-reals

Function: (random-source-make-reals s unit)

Function: (random-source-make-reals s)

Contract: (case-> (-> random-source? real? procedure?

(-> random-source? procedure?))

This function returns a procedure to generate random real numbers 0 < x < 1 using
the random source s. The resulting procedure is called without arguments.

6.2 Additional Random Number Functionality

The science collection provides additional functionality to that provided by SRFI 27.

6.2.1 The current-random-source Parameter

The main additional functionality is to define a parameter2, current-random-source,
which provides a separate random source reference for each thread. The default value
for this random source reference is default-random-stream.

The use of the current-random-source parameter overcomes the difficulty with
assignment to default-random-source. However, the routines random-integer and
random-real use the default-random-source variable and are unaware of the current-
random-source parameter.

2See PLT Scheme: Reference Manual, Section 7.7 Parameters

CHAPTER 6. RANDOM NUMBER GENERATION 33

current-random-source

Function: (current-random-source s)

Function: (current-random-source)

Contract: (case-> (-> random-source? any)

(-> random-source?))

Gets or sets the current random source. A guard procedure ensures that the value of
current-random-source is indeed a random source, as determined by random-source?,
otherwise a type error is raised.

with-random-source

Macro: (with-random-source s

body ...)

Executes the body with current-random-source set to the random source s.

with-new-random-source

Macro: (with-new-random-source s

body ...)

Executes the body with current-random-source set to a newly created random source.

6.2.2 Uniform Random Numbers

The science collection provides alternatives to the random-integer and random-real

functions that are aware of the current-random-source parameter. They also provide
a more convenient interface than random-source-make-integers and random-source-

make-reals.

random-uniform-int

Function: (random-uniform-int s n)

Function: (random-uniform-int n)

Contract: (case->

(-> random-source? (integer-in 1 +inf.0)

natural-number?)

(-> (integer-in 1 +inf.0) natural-number?))

This function returns the next integer in {0, . . . , n − 1} obtained from the random
source s or (current-random-source) if s is not specified. Subsequent results of this
function appear to be independent uniformly distributed over the range {0, . . . , n−1}.
The argument n must be a positive integer.

random-uniform

Function: (random-uniform s)

Function: (random-uniform)

Contract: (case-> random-source? (real-in 0.0 1.0))

(real-in 0.0 1.0)))

CHAPTER 6. RANDOM NUMBER GENERATION 34

This function returns the next number x, 0 < x < 1, obtained from the random source
s or (current-random-source) if s is not specified. Subsequent results of this function
appear to be independent uniformly distributed.

6.2.3 Miscellaneous Functions

These functions provide an alternative set of functions to get or set the state of a
random state. These functions match the conventions for structures in PLT Scheme.

random-source-state

Function: (random-source-state s)

Contract: (-> random-source? any)

The same as random-source-state-ref.

set-random-source-state!

Function: (set-random-source-state! s state)

Contract: (-> random-source? any? any)

The same as random-source-state-set!.

6.2.4 Random Source Vectors

These function provide a convenient method for generating a vector of repeatable
random sources.

make-random-source-vector

Function: (make-random-source-vector n i)

Function: (make-random-source-vector n)

Contract: (case-> (-> natural-number/c natural-number/c

(vectorof random-source?))

(-> natural-number/c (vectorof random-source?)))

This funtion returns a vector of random sources of length n. If i is provided, the
jth random source is initialized using (random-source-pseudo-randomize! i j). If
i is not provided, the ith random dource is initialized using (random-source-pseudo-

randomize! i 0). Note that this is not the same as having i default to 0.

6.3 Examples

Example: Histogram of uniform random numbers.

(require (planet "random-source.ss" ("williams" "science.plt" 2 0)))

(require (planet "histogram-with-graphics.ss"

("williams" "science.plt" 2 0)))

(let ((h (make-histogram-with-ranges-uniform 40 0 1))

(s (make-random-source)))

CHAPTER 6. RANDOM NUMBER GENERATION 35

(random-source-randomize! s)

(with-random-source s

(do ((i 0 (+ i 1)))

((= i 10000) (void))

(histogram-increment! h (random-uniform))))

(histogram-plot h "Histogram of Uniform Random Numbers"))

Figure 6.1 shows an example of the resulting histogram.

Figure 6.1: Histogram of Uniform Random Numbers

Example: Histogram of uniform random integers.

(require (planet "random-source.ss" ("williams" "science.plt" 2 0)))

(require (planet "histogram-with-graphics.ss"

("williams" "science.plt" 2 0)))

(let ((h (make-discrete-histogram))

(s (make-random-source)))

(random-source-randomize! s)

(with-random-source s

(do ((i 0 (+ i 1)))

((= i 10000) (void))

(discrete-histogram-increment! h (random-uniform-int 10))))

CHAPTER 6. RANDOM NUMBER GENERATION 36

(discrete-histogram-plot

h "Histogram of Uniform Random Integers"))

Figure 6.2 shows an example of the resulting histogram.

Figure 6.2: Histogram of Uniform Random Integers

Chapter 7

Random Number
Distributions

This chapter describes the functions for generating random variates and computing
their probability distributions provided by the PLT Scheme Science Collection.

The functions described in this chapter are defined in the random-distributions
sub-collection of the science collection. All of the modules in the random-distributions
sub-collection can be made available using the form:

(require (planet "random-distributions.ss"

("williams" "science.plt" 2 0)))

The random distribution graphics are provided as separate modules. To include
the random distribution graphics routines, use the following form:

(require (planet "random-distributions-with-graphics.ss"

("williams" "science.plt" 2 0)))

The individual modules in the random-distributions sub-collection can also be
made available as described in the sections below.

7.1 The Beta Distribution

The beta distribution functions are defined in the beta.ss file in the random-distri-
butions sub-collection of the science-collection and are made available using the form:

(require (planet "beta.ss" ("williams" "science.plt" 2 0)

"random-distributions"))

37

CHAPTER 7. RANDOM NUMBER DISTRIBUTIONS 38

7.1.1 Random Variates from the Beta Distribution

random-beta

Function: (random-beta s a b)

Function: (random-beta a b)

Contract: (case->

(-> random-source? real? real? (real-in 0.0 1.0))

(-> real? real? (real-in 0.0 1.0)))

This function returns a random variate from the beta distribution with parameters a
and b using the random source s or (current-random-source) if s is not provided.

Example: Histogram of random variates from the beta distribution with parame-
ters 2.0 and 3.0.

(require (planet "beta.ss" ("williams" "science.plt" 2 0)

"random-distributions"))

(require (planet "histogram-with-graphics.ss"

("williams" "science.plt" 2 0)))

(let ((h (make-histogram-with-ranges-uniform 40 0.0 1.0)))

(do ((i 0 (+ i 1)))

((= i 10000) (void))

(histogram-increment! h (random-beta 2.0 3.0)))

(histogram-plot h "Histogram of Beta Distribution"))

Figure 7.1 shows the resulting histogram.

7.1.2 Beta Distribution Density Functions

beta-pdf

Function: (beta-pdf x a b)

Contract: (-> real? real? real? (>=/c 0.0))

This function computes the probability density, p(x), at x for the beta distribution
with parameters a and b.

7.1.3 Beta Distribution Graphics

The beta distribution graphics functions are defined in the file beta-graphics.ss in
the random-distributions sub-collection of the science collection and are made available
using the form:

(require (planet "beta-graphics.ss" ("williams" "science.plt" 2 0)

"random-distributions"))

beta-plot

Function: (beta-plot a b)

Contract: (-> real? real? any)

CHAPTER 7. RANDOM NUMBER DISTRIBUTIONS 39

Figure 7.1: Histogram of Random Variates from Beta (2.0, 3.0)

This function returns a plot of the probability density of the beta distribution with
parameters a and b. The plot is produced by the plot collection provided with PLT
Scheme (PLoT Scheme).

Example: Plot of probability density of the beta distribution with parameters 2.0
and 3.0.

(require (planet "beta-graphics.ss" ("williams" "science.plt" 2 0)

"random-distributions"))

(beta-plot 2.0 3.0)

Figure 7.2 shows the resulting plot.

7.2 The Bivariate Gaussian Distribution

The bivariate Gaussian distribution functions are defined in the bivariate-gaussian

.ss file in the random-distributions sub-collection of the science-collection and are
made available using the form:

(require (planet "bivatiate-gaussian.ss" ("williams" "science.plt" 2 0)

"random-distributions"))

CHAPTER 7. RANDOM NUMBER DISTRIBUTIONS 40

Figure 7.2: Plot of Probability Density for Beta(2.0, 3.0)

7.2.1 Random Variates from the Bivariate Gaussian Dis-
tribution

random-bivariate-gaussian

Function: (random-bivariate-gaussian s sigma-x sigma-y rho)

Function: (random-bivariate-gaussian sigma-x sigma-y rho)

Contract: (case->

(-> random-source? (>=/c 0.0) (>=/c 0.0)

(real-in -1.0 1.0) (values real? real?))

(-> (>=/c 0.0) (>=/c 0.0)

(real-in -1.0 1.0) (values real? real?))

This function returns a pair of correlated Gaussian variates, with mean 0, correlation
coefficient rho, and standard deviations sigma-x and sigma-y in the x and y directions
using the random source s or (current-random-source) if s is not provided. The
correlation coefficient rho must lie between −1 and 1.

Example: Histogram of random variates from the bivariate Gaussian distribution
standard deviations 1.0 and 1.0 in the x and y directions and correlation coefficient
0.0.

(require (planet "bivariate-gaussian.ss" ("williams" "science.plt" 2 0)

"random-distributions"))

(require (planet "histogram-2d-with-graphics.ss"

("williams" "science.plt" 2 0)))

CHAPTER 7. RANDOM NUMBER DISTRIBUTIONS 41

(let ((h (make-histogram-2d-with-ranges-uniform

20 20 -3.0 3.0 -3.0 3.0)))

(do ((i 0 (+ i 1)))

((= i 10000) (void))

(let-values (((x y) (random-bivariate-gaussian 1.0 1.0 0.0)))

(histogram-2d-increment! h x y)))

(histogram-2d-plot h "Histogram of Bivariate Gaussian Distribution"))

Figure 7.3 shows the resulting 2D histogram.

Figure 7.3: Histogram of Random Variates from Bivariate Gaussian (1.0, 1.0,
0.0)

7.2.2 Bivariate Gaussian Distribution Density Functions

bivariate-gaussian-pdf

Function: (bivariate-gaussian-pdf x y sigma-x sigma-y rho)

Contract: (-> real? real? (>=/c 0.0 (>=/c 0.0) (real-in -1.0 0.0) real?)

This function computes the probability density, p(x, y), at (x, y) for the bivariate
Gaussian distribution with standard deviations sigma-x and sigma-y in the x and y
directions and correlation coefficient rho.

CHAPTER 7. RANDOM NUMBER DISTRIBUTIONS 42

7.2.3 Bivariate Gaussian Distribution Graphics

The bivariate Gaussian distribution graphics functions are defined in the file bivariate-
gaussian-graphics.ss in the random-distributions sub-collection of the science col-
lection and are made available using the form:

(require (planet "bivariate-gaussian-graphics.ss"

("williams" "science.plt" 2 0)

"random-distributions"))

bivariate-gaussian-plot

Function: (bivariate-gaussian-plot sigma-x sigma-y rho)

Contract: (-> (>=/c 0.0) (>=/c 0.0) (real-in -1.0 1.0) any)

This function returns a plot of the probability density of the bivariate Gaussian dis-
tribution with standard deviations sigma-x and sigma-y in the x and y directions and
correlation coefficient rho. The plot is produced by the plot collection provided with
PLT Scheme (PLoT Scheme).

Example: Plot of probability density of the bivariate Gaussian distribution with
standard deviations 1.0 and 1.0 in the x and y directions and correlation coefficient
0.0.

(require (planet "bivariate-gaussian-graphics.ss"

("williams" "science.plt" 2 0)

"random-distributions"))

(bivariate-gaussian-plot 1.0 1.0 0.0)

Figure 7.4 shows the resulting plot.

7.3 The Chi-Squared Distribution

The chi-squared distribution functions are defined in the chi-squared.ss file in the
random-distributions sub-collection of the science-collection and are made available
using the form:

(require (planet "chi-squared.ss" ("williams" "science.plt" 2 0)

"random-distributions"))

7.3.1 Random Variates from the Chi-Squared Distribu-
tion

random-chi-squared

Function: (random-chi-squared s nu)

Function: (random-chi-squared nu)

Contract: (case->

(-> random-source? real? (>=/c 0.0))

(-> real? (>=/c 0.0)))

CHAPTER 7. RANDOM NUMBER DISTRIBUTIONS 43

Figure 7.4: Plot of Probability Density for Bivariate Gaussian (1.0, 1.0, 0.0)

This function returns a random variate from the chi squared distribution with nu
degrees of freedom using the random source s or (current-random-source) if s is not
provided.

Example: Histogram of random variates from the chi squared distribution with 3.0
degrees of freedom.

(require (planet "chi-squared.ss" ("williams" "science.plt" 2 0)

"random-distributions"))

(require (planet "histogram-with-graphics.ss"

("williams" "science.plt" 2 0)))

(let ((h (make-histogram-with-ranges-uniform 40 0.0 10.0)))

(do ((i 0 (+ i 1)))

((= i 10000) (void))

(histogram-increment! h (random-chi-squared 3.0)))

(histogram-plot h "Histogram of Chi Squared Distribution"))

Figure 7.5 shows the resulting histogram.

CHAPTER 7. RANDOM NUMBER DISTRIBUTIONS 44

Figure 7.5: Histogram of Random Variates from Chi-Squared (3.0))

7.3.2 Chi-Squared Distribution Density Functions

chi-squared-pdf

Function: (chi-squared-pdf x nu)

Contract: (-> real? real? (>=/c 0.0))

This function computes the probability density, p(x), at x for the chi squared distri-
bution with nu degrees of freedom.

7.3.3 Chi-Squared Distribution Graphics

The chi squared distribution graphics functions are defined in the file chi-squared-

-graphics.ss in the random-distributions sub-collection of the science collection and
are made available using the form:

(require (planet "chi-squared-graphics.ss"

("williams" "science.plt" 2 0)

"random-distributions"))

chi-squared-plot

Function: (chi-squared-plot nu)

Contract: (-> real? any)

CHAPTER 7. RANDOM NUMBER DISTRIBUTIONS 45

This function returns a plot of the probability density of the chi squared distribution
with nu degrees of freedom. The plot is produced by the plot collection provided with
PLT Scheme (PLoT Scheme).

Example: Plot of probability density of the chi squared distribution with 3.0 de-
grees of freedom.

(require (planet "chi-squared-graphics.ss"

("williams" "science.plt" 2 0)

"random-distributions"))

(chi-squared-plot 3.0)

Figure 7.6 shows the resulting plot.

Figure 7.6: Plot of Probability Density for Chi-Squared (3.0)

7.4 The Exponential Distribution

The exponential distribution functions are defined in the exponential.ss file in the
random-distributions sub-collection of the science-collection and are made available
using the form:

(require (planet "exponential.ss" ("williams" "science.plt" 2 0)

"random-distributions"))

CHAPTER 7. RANDOM NUMBER DISTRIBUTIONS 46

7.4.1 Random Variates from the Exponential Distribution

random-exponential

Function: (random-exponential s mu)

Function: (random-exponential mu)

Contract: (case->

(-> random-source? (>/c 0.0) (>=/c 0.0))

(-> (>/c 0.0) (>=/c 0.0)))

This function returns a random variate from the exponential distribution with mean
mu using the random source s or (current-random-source) if s is not provided.

Example: Histogram of random variates from the exponential distribution with
mean 1.0.

(require (planet "exponential.ss" ("williams" "science.plt" 2 0)

"random-distributions"))

(require (planet "histogram-with-graphics.ss"

("williams" "science.plt" 2 0)))

(let ((h (make-histogram-with-ranges-uniform 40 0.0 8.0)))

(do ((i 0 (+ i 1)))

((= i 10000) (void))

(histogram-increment! h (random-exponential 1.0)))

(histogram-plot h "Histogram of Exponential Distribution"))

Figure 7.7 shows the resulting histogram.

7.4.2 Exponential Distribution Density Functions

exponential-pdf

Function: (exponential-pdf x mu)

Contract: (-> real? real? (>=/c 0.0))

This function computes the probability density, p(x), at x for the exponential distri-
bution with mean mu.

exponential-cdf

Function: (exponential-cdf x mu)

Contract: (-> real? real? (real-in 0.0 1.0))

This function computes the cumulative density, d(x), at x for the exponential distri-
bution with mean mu.

7.4.3 Exponential Distribution Graphics

The exponential distribution graphics functions are defined in the file exponential-

graphics.ss in the random-distributions sub-collection of the science collection and
are made available using the form:

CHAPTER 7. RANDOM NUMBER DISTRIBUTIONS 47

Figure 7.7: Histogram of Random Variates from Exponential (1.0))

(require (planet "exponential-graphics.ss"

("williams" "science.plt" 2 0)

"random-distributions"))

exponential-plot

Function: (exponential-plot mu)

Contract: (-> (>=/c 0.0) any)

This function returns a plot of the probability density and cumulative density of the
exponential distribution with mean mu. The plot is produced by the plot collection
provided with PLT Scheme (PLoT Scheme).

Example: Plot of probability density of the exponential distribution with mean
3.0.

(require (planet "exponential-graphics.ss"

("williams" "science.plt" 2 0)

"random-distributions"))

(exponential-plot 3.0)

Figure 7.8 shows the resulting plot.

CHAPTER 7. RANDOM NUMBER DISTRIBUTIONS 48

Figure 7.8: Plot of Probability Density for Exponential (1.0)

7.5 The F-Distribution

The F-distribution functions are defined in the f-distribution.ss file in the random-
distributions sub-collection of the science-collection and are made available using the
form:

(require (planet "f-distribution.ss" ("williams" "science.plt" 2 0)

"random-distributions"))

7.5.1 Random Variates from the F-Distribution

random-f-distribution

Function: (random-f-distribution s nu1 nu2)

Function: (random-f-distribution nu1 nu2)

Contract: (case->

(-> random-source? real? real? (>=/c 0.0))

(-> real? real? (>=/c 0.0)))

This function returns a random variate from the F-distribution with nu1 and nu2
degrees of freedom using the random source s or (current-random-source) if s is not
provided.

Example: Histogram of random variates from the F-distribution with 2.0 and 3.0
degrees of freedom.

CHAPTER 7. RANDOM NUMBER DISTRIBUTIONS 49

(require (planet "f-distribution.ss" ("williams" "science.plt" 2 0)

"random-distributions"))

(require (planet "histogram-with-graphics.ss"

("williams" "science.plt" 2 0)))

(let ((h (make-histogram-with-ranges-uniform 40 0.0 10.0)))

(do ((i 0 (+ i 1)))

((= i 10000) (void))

(histogram-increment! h (random-f-distribution 2.0 3.0)))

(histogram-plot h "Histogram of F-Distribution"))

Figure 7.9 shows the resulting histogram.

Figure 7.9: Histogram of Random Variates from F-Distribution (2.0, 3.0))

7.5.2 F-Distribution Density Functions

f-distribution-pdf

Function: (f-distribution-pdf x nu1 nu2)

Contract: (-> real? real? real? (>=/c 0.0))

This function computes the probability density, p(x), at x for the F-distribution with
nu1 and nu2 degrees of freedom.

CHAPTER 7. RANDOM NUMBER DISTRIBUTIONS 50

7.5.3 F-Distribution Graphics

The exponential distribution graphics functions are defined in the file f-distribution-
graphics.ss in the random-distributions sub-collection of the science collection and
are made available using the form:

(require (planet "f-distribution-graphics.ss"

("williams" "science.plt" 2 0)

"random-distributions"))

f-distribution-plot

Function: (f-distribution-plot nu1 nu2)

Contract: (-> (>=/c 0.0) any)

This function returns a plot of the probability density of the F-distribution with nu1
and nu2 degrees of freedom. The plot is produced by the plot collection provided with
PLT Scheme (PLoT Scheme).

Example: Plot of probability density of the F-distribution distribution with 2.0
and 3.0 degrees of freedom.

(require (planet "f-distribution-graphics.ss"

("williams" "science.plt" 2 0)

"random-distributions"))

(f-distribution-plot 2.0 3.0)

Figure 7.10 shows the resulting plot.

7.6 The Flat (Uniform) Distribution

The flat (uniform) distribution functions are defined in the flat.ss file in the random-
distributions sub-collection of the science-collection and are made available using the
form:

(require (planet "flat.ss" ("williams" "science.plt" 2 0)

"random-distributions"))

7.6.1 Random Variates from the Flat Distribution

random-flat

Function: (random-flat s a b)

Function: (random-flat a b)

Contract: (case->

(->r ((s random-source?)

(a real?)

(b (>/c a))

real?)

(->r ((a real?)

(b (>/c a))

real?))

CHAPTER 7. RANDOM NUMBER DISTRIBUTIONS 51

Figure 7.10: Plot of Probability Density for F-Distribution (2.0, 3.0)

This function returns a random variate from the flat (uniform) distribution from a to
b using the random source s or (current-random-source) if s is not provided.

Example: Histogram of random variates from the flat (uniform) distribution from
1.0 to 4.0.

(require (planet "flat.ss" ("williams" "science.plt" 2 0)

"random-distributions"))

(require (planet "histogram-with-graphics.ss"

("williams" "science.plt" 2 0)))

(let ((h (make-histogram-with-ranges-uniform 40 1.0 4.0)))

(do ((i 0 (+ i 1)))

((= i 10000) (void))

(histogram-increment! h (random-flat 1.0 4.0)))

(histogram-plot h "Histogram of Flat (Uniform) Distribution"))

Figure 7.11 shows the resulting histogram.

CHAPTER 7. RANDOM NUMBER DISTRIBUTIONS 52

Figure 7.11: Histogram of Random Variates from Flat (Uniform) (1.0, 4.0)

7.6.2 Flat Distribution Density Functions

flat-pdf

Function: (flat-pdf x a b)

Contract: (->r ((x real?)

(a real?)

(b (>/c a)))

(>=/c 0.0))

This function computes the probability density, p(x), at x for the flat (uniform) dis-
tribution from a to b.

flat-cdf

Function: (flat-cdf x a b)

Contract: (->r ((x real?)

(a real?)

(b (>/c a)))

(real-in 0.0 1.0))

This function computes the cumulative density, d(x), at x for the flat (uniform) dis-
tribution from a to b.

CHAPTER 7. RANDOM NUMBER DISTRIBUTIONS 53

7.6.3 Flat Distribution Graphics

The flat (uniform) distribution graphics functions are defined in the file flat-graphics-
.ss in the random-distributions sub-collection of the science collection and are made
available using the form:

(require (planet "flat-graphics.ss" ("williams" "science.plt" 2 0)

"random-distributions"))

flat-plot

Function: (flat-plot a b)

Contract: (->r ((a real?)

(b (>/c a)))

any)

This function returns a plot of the probability density of the flat distribution from a
to b. The plot is produced by the plot collection provided with PLT Scheme (PLoT
Scheme).

Example: Plot of probability density and cumulative density of the flat (uniform)
distribution from 1.0 to 4.0.

(require (planet "flat-graphics.ss" ("williams" "science.plt" 2 0)

"random-distributions"))

(flat-plot 1.0 4.0)

Figure 7.12 shows the resulting plot.

7.7 The Gamma Distribution

The gamma distribution functions are defined in the gamma.ss file in the random-
distributions sub-collection of the science-collection and are made available using the
form:

(require (planet "gamma.ss" ("williams" "science.plt" 2 0)

"random-distributions"))

7.7.1 Random Variates from the Gamma Distribution

random-gamma

Function: (random-gamma s a b)

Function: (random-gamma a b)

Contract: (case->

(-> random-source? (>/c 0.0) real? (>=/c 0.0))

(-> (>/c 0.0 real? (>=/c 0.0)))

This function returns a random variate from the gamma distribution with parameters
a and b using the random source s or (current-random-source) if s is not provided.

Example: Histogram of random variates from the gamma distribution with pa-
rameters 3.0 and 3.0.

CHAPTER 7. RANDOM NUMBER DISTRIBUTIONS 54

Figure 7.12: Plot of Probability Density for Flat (Uniform) (1.0, 4.0)

(require (planet "gamma.ss" ("williams" "science.plt" 2 0)

"random-distributions"))

(require (planet "histogram-with-graphics.ss"

("williams" "science.plt" 2 0)))

(let ((h (make-histogram-with-ranges-uniform 40 0.0 24.0)))

(do ((i 0 (+ i 1)))

((= i 10000) (void))

(histogram-increment! h (random-gamma 3.0 3.0)))

(histogram-plot h "Histogram of Gamma Distribution"))

Figure 7.13 shows the resulting histogram.

7.7.2 Gamma Distribution Density Functions

gamma-pdf

Function: (gamma-pdf x a b)

Contract: (-> real? (>/c 0.0) real? (>=/c 0.0))

This function computes the probability density, p(x), at x for the gamma distribution
with parameters a and b.

CHAPTER 7. RANDOM NUMBER DISTRIBUTIONS 55

Figure 7.13: Histogram of Random Variates from Gamma (3.0, 3.0)

7.7.3 Gamma Distribution Graphics

The gamma distribution graphics functions are defined in the file gamma-graphics.ss

in the random-distributions sub-collection of the science collection and are made avail-
able using the form:

(require (planet "gamma-graphics.ss" ("williams" "science.plt" 2 0)

"random-distributions"))

gamma-plot

Function: (gamma-plot a b)

Contract: (-> (>/c 0.0) real?)

This function returns a plot of the probability density of the gamma distribution with
parameters a and b. The plot is produced by the plot collection provided with PLT
Scheme (PLoT Scheme).

Example: Plot of probability density of the gamma distribution with parameters
3.0 and 3.0.

(require (planet "gamma-graphics.ss" ("williams" "science.plt" 2 0)

"random-distributions"))

(gamma-plot 3.0 3.0)

Figure 7.14 shows the resulting plot.

CHAPTER 7. RANDOM NUMBER DISTRIBUTIONS 56

Figure 7.14: Plot of Probability Density for Gamma (3.0, 3.0)

7.8 The Gaussian Distribution

The Gaussian distribution functions are defined in the gaussian.ss file in the random-
distributions sub-collection of the science-collection and are made available using the
form:

(require (planet "gaussian.ss" ("williams" "science.plt" 2 0)

"random-distributions"))

7.8.1 Random Variates from the Gaussian Distribution

random-gaussian

Function: (random-gaussian s mu sigma)

Function: (random-gaussian mu sigma)

Contract: (case->

(-> random-source? real? (>=/c 0.0) real?)

(-> real? (>=/c 0.0) real?))

This function returns a random variate from the Gaussian (normal) distribution with
mean mu and standard deviation sigma using the random source s or (current-

-random-source) if s is not provided. This function uses the Box-Mueller algorithm
that requires two calls to the random source s.

CHAPTER 7. RANDOM NUMBER DISTRIBUTIONS 57

Example: Histogram of random variates from the Gaussian (normal) distribution
with mean 10.0 and standard deviation 2.0.

(require (planet "gaussian.ss" ("williams" "science.plt" 2 0)

"random-distributions"))

(require (planet "histogram-with-graphics.ss"

("williams" "science.plt" 2 0)))

(let ((h (make-histogram-with-ranges-uniform 40 4.0 16.0)))

(do ((i 0 (+ i 1)))

((= i 10000) (void))

(histogram-increment! h (random-gaussian 10.0 2.0)))

(histogram-plot h "Histogram of Gaussian Distribution"))

Figure 7.15 shows the resulting histogram.

Figure 7.15: Histogram of Random Variates from Gaussian (Normal) (10.0, 2.0)

random-unit-gaussian

Function: (random-unit-gaussian s)

Function: (random-unit-gaussian)

Contract: (case->

(-> random-source? real?)

(-> real?))

CHAPTER 7. RANDOM NUMBER DISTRIBUTIONS 58

This function returns a random variate from the Gaussian (normal) distribution with
mean 0.0 and standard deviation 1.0 using the random source s or (current-random-
source) if s is not provided. This function uses the Box-Mueller algorithm that
requires two calls to the random source s.

Example: Histogram of random variates from the unit Gaussian (normal) distri-
bution.

(require (planet "gaussian.ss" ("williams" "science.plt" 2 0)

"random-distributions"))

(require (planet "histogram-with-graphics.ss"

("williams" "science.plt" 2 0)))

(let ((h (make-histogram-with-ranges-uniform 40 -3.0 3.0)))

(do ((i 0 (+ i 1)))

((= i 10000) (void))

(histogram-increment! h (random-unit-gaussian)))

(histogram-plot h "Histogram of Unit Gaussian Distribution"))

Figure 7.16 shows the resulting histogram.

Figure 7.16: Histogram of Random Variates from Unit Gaussian (Normal)

CHAPTER 7. RANDOM NUMBER DISTRIBUTIONS 59

random-gaussian-ratio-method

Function: (random-gaussian-ratio-method s mu sigma)

Function: (random-gaussian-ratio-method mu sigma)

Contract: (case->

(-> random-source? real? (>=/c 0.0) real?)

(-> real? (>=/c 0.0) real?))

This function returns a random variate from the Gaussian (normal) distribution with
mean mu and standard deviation sigma using the random source s or (current-

random-source) if s is not provided. This function uses the Kinderman-Monahan
ratio method.

random-unit-gaussian-ratio-method

Function: (random-unit-gaussian-ratio-method s)

Function: (random-unit-gaussian-ratio-method)

Contract: (case->

(-> random-source? real?)

(-> real?))

This function returns a random variate from the Gaussian (normal) distribution with
mean 0.0 and standard deviation 1.0 using the random source s or (current-random-
source) if s is not provided. This function uses the Kinderman-Monahan ratio
method.

7.8.2 Gaussian Distribution Density Functions

gaussian-pdf

Function: (gaussian-pdf x mu sigma)

Contract: (-> real? real? (>/c 0.0) (>=/c 0.0))

This function computes the probability density, p(x), at x for the Gaussian (normal)
distribution with mean mu and standard deviation sigma.

gaussian-cdf

Function: (gaussian-cdf x mu sigma)

Contract: (-> real? real? (>/c 0.0) (real-in 0.0 1.0))

This function computes the cumulative density, d(x), at x for the Gaussian (normal)
distribution with mean mu and standard deviation sigma.

unit-gaussian-pdf

Function: (unit-gaussian-pdf x)

Contract: (-> real? (>=/c 0.0))

This function computes the probability density, p(x), at x for the Gaussian (normal)
distribution with mean 0.0 and standard deviation 1.0.

CHAPTER 7. RANDOM NUMBER DISTRIBUTIONS 60

unit-gaussian-pdf

Function: (unit-gaussian-cdf x)

Contract: (-> real? (real-in 0.0 1.0))

This function computes the cumulative density, d(x), at x for the Gaussian (normal)
distribution with mean 0.0 and standard deviation 1.0.

7.8.3 Gaussian Distribution Graphics

The Gaussian distribution graphics functions are defined in the file gaussian-graphics-
.ss in the random-distributions sub-collection of the science collection and are made
available using the form:

(require (planet "gaussian-graphics.ss" ("williams" "science.plt" 2 0)

"random-distributions"))

gaussian-plot

Function: (gaussian-plot mu sigma)

Contract: (-> real? (>/c 0.0) any)

This function returns a plot of the probability density and cumulative density of the
Gaussian (normal) distribution with mean mu and standard deviation sigma. The
plot is produced by the plot collection provided with PLT Scheme (PLoT Scheme).

Example: Plot of probability density and cumulative density of the Gaussian (nor-
mal) distribution with mean 10.0 and standard deviation 2.0.

(require (planet "gaussian-graphics.ss" ("williams" "science.plt" 2 0)

"random-distributions"))

(gaussian-plot 10.0 2.0)

Figure 7.17 shows the resulting plot.

unit-gaussian-plot

Function: (unit-gaussian-plot)

Contract: (-> any)

This function returns a plot of the probability density and cumulative density of the
Gaussian (normal) distribution with mean 0.0 and standard deviation 1.0. The plot
is produced by the plot collection provided with PLT Scheme (PLoT Scheme).

Example: Plot of probability density and cumulative density of the Gaussian (nor-
mal) distribution with mean 0.0 and standard deviation 1.0.

(require (planet "gaussian-graphics.ss" ("williams" "science.plt" 2 0)

"random-distributions"))

(unit-gaussian-plot)

Figure 7.18 shows the resulting plot.

CHAPTER 7. RANDOM NUMBER DISTRIBUTIONS 61

Figure 7.17: Plot of Probability Density for Gaussian (Normal) (10.0, 2.0)

7.9 The Gaussian Tail Distribution

The Gaussian tail distribution functions are defined in the gaussian-tail.ss file in
the random-distributions sub-collection of the science-collection and are made available
using the form:

(require (planet "gaussian-tail.ss" ("williams" "science.plt" 2 0)

"random-distributions"))

7.9.1 Random Variates from the Gaussian Tail Distribu-
tion

random-gaussian-tail

Function: (random-gaussian-tail s a mu sigma)

Function: (random-gaussian-tail a mu sigma

Contract: (case->

(-> random-source? real? real? (>/c 0.0) real?)

(-> real? real? (>/c 0.0) real?))

This function returns a random variate from the upper tail of the Gaussian distribution
with mean mu and standard deviation sigma using the random source s or (current-
random-source) if s is not provided. The value returned is larger than the lower limit
a, which must be greater than the mean mu.

CHAPTER 7. RANDOM NUMBER DISTRIBUTIONS 62

Figure 7.18: Plot of Probability Density for Unit Gaussian (Normal)

random-unit-gaussian-tail

Function: (random-unit-gaussian-tail s a)

Function: (random-unit-gaussian-tail a

Contract: (case->

(-> random-source? (>/c 0.0) (>/c 0.0))

(-> (>/c 0.0)))

This function returns a random variate from the upper tail of the Gaussian distribution
with mean 0 and standard deviation 1 using the random source s or (current-random-
source) if s is not provided. The value returned is larger than the lower limit a, which
must be positive.

Example: Histogram of random variates from the upper tail greater than 16.0 of
the Gaussian distribution with mean 10.0 and standard deviation 2.0.

(require (planet "gaussian-tail.ss" ("williams" "science.plt" 2 0)

"random-distributions"))

(require (planet "histogram-with-graphics.ss"

("williams" "science.plt" 2 0)))

(let ((h (make-histogram-with-ranges-uniform 40 16.0 22.0)))

(do ((i 0 (+ i 1)))

((= i 10000) (void))

(histogram-increment! h (random-gaussian-tail 16.0 10.0 2.0)))

CHAPTER 7. RANDOM NUMBER DISTRIBUTIONS 63

(histogram-plot h "Histogram of Gaussian Tail Distribution"))

Figure 7.19 shows the resulting histogram.

Figure 7.19: Histogram of Random Variates from Gaussian Tail (16.0, 10.0, 2.0)

Example: Histogram of random variates from the upper tail greater than 3.0 of
the unit Gaussian distribution.

(require (planet "gaussian-tail.ss" ("williams" "science.plt" 2 0)

"random-distributions"))

(require (planet "histogram-with-graphics.ss"

("williams" "science.plt" 2 0)))

(let ((h (make-histogram-with-ranges-uniform 40 3.0 6.0)))

(do ((i 0 (+ i 1)))

((= i 10000) (void))

(histogram-increment! h (random-unit-gaussian-tail 3.0)))

(histogram-plot h "Histogram of Unit Gaussian Tail Distribution"))

Figure 7.20 shows the resulting histogram.

7.9.2 Gaussian Tail Distribution Density Functions

gaussian-tail-pdf

Function: (gaussian-tail-pdf x a mu sigma)

Contract: (-> real? real? real? (>/c 0.0) (>=/c 0.0))

CHAPTER 7. RANDOM NUMBER DISTRIBUTIONS 64

Figure 7.20: Histogram of Random Variates from Unit Gaussian Tail (3.0)

This function computes the probability density, p(x), at x for the upper tail greater
than a of the Gaussian distribution with mean mu and standard deviation sigma.

unit-gaussian-tail-pdf

Function: (unit-gaussian-tail-pdf x a)

Contract: (-> real? (>=/c 0.0) (>=/c 0.0))

This function computes the probability density, p(x), at x for the upper tail greater
than a of the Gaussian distribution with mean mu and standard deviation sigma.

7.9.3 Gaussian Tail Distribution Graphics

The Gaussian tail distribution graphics functions are defined in the file gaussian-

tail-graphics.ss in the random-distributions sub-collection of the science collection
and are made available using the form:

(require (planet "gaussian-tail-graphics.ss"

("williams" "science.plt" 2 0)

"random-distributions"))

CHAPTER 7. RANDOM NUMBER DISTRIBUTIONS 65

gaussian-tail-plot

Function: (gaussian-tail-plot a mu sigma)

Contract: (-> real? real? (>/c 0.0) any)

This function returns a plot of the probability density of the upper tail greater than a
of the Gaussian distribution with mean mu and standard deviation sigma. The plot
is produced by the plot collection provided with PLT Scheme (PLoT Scheme).

Example: Plot of probability density and cumulative density of the upper tail
greater than 16.0 of the Gaussian distribution with mean 10.0 and standard deviation
2.0.

(require (planet "gaussian-tail-graphics.ss"

("williams" "science.plt" 2 0)

"random-distributions"))

(gaussian-tail-plot 16.0 10.0 2.0)

Figure 7.21 shows the resulting plot.

Figure 7.21: Plot of Probability Density for Gaussian Tail (16.0, 10.0, 2.0)

unit-gaussian-tail-plot

Function: (unit-gaussian-tail-plot a)

Contract: (-> (>=/c 0.0) any)

CHAPTER 7. RANDOM NUMBER DISTRIBUTIONS 66

This function returns a plot of the probability density of the upper tail greater than
a of the Gaussian distribution with mean 0.0 and standard deviation 1.0. The plot is
produced by the plot collection provided with PLT Scheme (PLoT Scheme).

Example: Plot of probability density and cumulative density of the upper tail
greater than 3.0 of the Gaussian distribution with mean 0.0 and standard deviation
1.0.

(require (planet "gaussian-tail-graphics.ss"

("williams" "science.plt" 2 0)

"random-distributions"))

(unit-gaussian-tail-plot 3.0)

Figure 7.22 shows the resulting plot.

Figure 7.22: Plot of Probability Density for Unit Gaussian Tail (3.0)

7.10 The Log Normal Distribution

The log normal distribution functions are defined in the lognormal.ss file in the
random-distributions sub-collection of the science-collection and are made available
using the form:

(require (planet "lognormal.ss" ("williams" "science.plt" 2 0)

"random-distributions"))

CHAPTER 7. RANDOM NUMBER DISTRIBUTIONS 67

7.10.1 Random Variates from the Log Normal Distribu-
tion

random-lognormal

Function: (random-lognormal s mu sigma)

Function: (random-lognormal mu sigma)

Contract: (case->

(-> random-source? real? (>=/c 0.0) real?)

(-> real? real?))

This function returns a random variate from the log normal distribution with mean mu
and standard deviation sigma using the random source s or (current-random-source)
if s is not provided.

Example: Histogram of random variates from the log normal distribution with
mean 0.0 and standard deviation 1.0.

(require (planet "lognormal.ss" ("williams" "science.plt" 2 0)

"random-distributions"))

(require (planet "histogram-with-graphics.ss"

("williams" "science.plt" 2 0)))

(let ((h (make-histogram-with-ranges-uniform 40 0.0 6.0)))

(do ((i 0 (+ i 1)))

((= i 10000) (void))

(histogram-increment! h (random-lognormal 0.0 1.0)))

(histogram-plot h "Histogram of Log Normal Distribution"))

Figure 7.23 shows the resulting histogram.

7.10.2 Log Normal Distribution Density Functions

lognormal-pdf

Function: (lognormal-pdf x mu sigma)

Contract: (-> real? real? (>/c 0.0) (>=/c 0.0))

This function computes the probability density, p(x), at x for the log normal distribu-
tion with mean mu and standard deviation sigma.

lognormal-cdf

Function: (lognormal-cdf x mu sigma)

Contract: (-> real? real? (>/c 0.0) (real-in 0.0 1.0))

This function computes the cumulative density, d(x), at x for the log normal distribu-
tion with mean mu and standard deviation sigma.

7.10.3 Log Normal Distribution Graphics

The log normal distribution graphics functions are defined in the file lognormal-

graphics.ss in the random-distributions sub-collection of the science collection and
are made available using the form:

CHAPTER 7. RANDOM NUMBER DISTRIBUTIONS 68

Figure 7.23: Histogram of Random Variates from Log Normal (0.0, 1.0)

(require (planet "lognormal-graphics.ss"

("williams" "science.plt" 2 0)

"random-distributions"))

lognormal-plot

Function: (lognormal-plot mu sigma)

Contract: (-> real? (>/c 0.0) any)

This function returns a plot of the probability density and cumulative density of the
log normal distribution with mean mu and standard deviation sigma. The plot is
produced by the plot collection provided with PLT Scheme (PLoT Scheme).

Example: Plot of probability density and cumulative density of the log normal
distribution with mean 0.0 and standard deviation 1.0.

(require (planet "lognormal-graphics.ss"

("williams" "science.plt" 2 0)

"random-distributions"))

(lognormal-plot 0.0 1.0)

Figure 7.24 shows the resulting plot.

CHAPTER 7. RANDOM NUMBER DISTRIBUTIONS 69

Figure 7.24: Plot of Probability Density for Log Normal (0.0, 1.0)

7.11 The Pareto Distribution

The Pareto distribution functions are defined in the pareto.ss file in the random-
distributions sub-collection of the science-collection and are made available using the
form:

(require (planet "pareto.ss" ("williams" "science.plt" 2 0)

"random-distributions"))

7.11.1 Random Variates from the Pareto Distribution

random-pareto

Function: (random-pareto s a b)

Function: (random-pareto a b)

Contract: (case->

(-> random-source? real? real? real?)

(-> real? real? real?))

This function returns a random variate from the Pareto distribution with parameters
a and b using the random source s or (current-random-source) if s is not provided.

Example: Histogram of random variates from the Pareto distribution with param-
eters 1.0 and 1.0.

CHAPTER 7. RANDOM NUMBER DISTRIBUTIONS 70

(require (planet "pareto.ss" ("williams" "science.plt" 2 0)

"random-distributions"))

(require (planet "histogram-with-graphics.ss"

("williams" "science.plt" 2 0)))

(let ((h (make-histogram-with-ranges-uniform 40 1.0 21.0)))

(do ((i 0 (+ i 1)))

((= i 10000) (void))

(histogram-increment! h (random-pareto 1.0 1.0)))

(histogram-plot h "Histogram of Pareto Distribution"))

Figure 7.25 shows the resulting histogram.

Figure 7.25: Histogram of Random Variates from Pareto (1.0, 1.0)

7.11.2 Pareto Distribution Density Functions

pareto-pdf

Function: (pareto-pdf x a b)

Contract: (-> real? real? real? (>=/c 0.0))

This function computes the probability density, p(x), at x for the Pareto distribution
with parameters a and b.

CHAPTER 7. RANDOM NUMBER DISTRIBUTIONS 71

pareto-cdf

Function: (pareto-cdf x a b)

Contract: (-> real? real? real? (real-in 0.0 1.0))

This function computes the cumulative density, d(x), at x for the Pareto distribution
with parameters a and b.

7.11.3 Pareto Distribution Graphics

The Pareto distribution graphics functions are defined in the file pareto-graphics.ss

in the random-distributions sub-collection of the science collection and are made avail-
able using the form:

(require (planet "pareto-graphics.ss" ("williams" "science.plt" 2 0)

"random-distributions"))

pareto-plot

Function: (pareto-plot a b)

Contract: (-> real? real? any)

This function returns a plot of the probability density and cumulative density of the
Pareto distribution with parameters a and b. The plot is produced by the plot collec-
tion provided with PLT Scheme (PLoT Scheme).

Example: Plot of probability density and cumulative density of the Pareto distri-
bution with parameters 1.0 and 1.0.

(require (planet "pareto-graphics.ss" ("williams" "science.plt" 2 0)

"random-distributions"))

(pareto-plot 1.0 1.0)

Figure 7.26 shows the resulting plot.

7.12 The T-Distribution

The t-distribution functions are defined in the t-distribution.ss file in the random-
distributions sub-collection of the science-collection and are made available using the
form:

(require (planet "t-distribution.ss" ("williams" "science.plt" 2 0)

"random-distributions"))

7.12.1 Random Variates from the T-Distribution

random-t-distribution

Function: (random-t-distribution s nu)

Function: (random-t-distribution nu)

Contract: (case->

(-> random-source? real? real?)

(-> real? real?))

CHAPTER 7. RANDOM NUMBER DISTRIBUTIONS 72

Figure 7.26: Plot of Probability Density for Pareto (1.0, 1.0)

This function returns a random variate from the t-distribution with nu degrees of
freedom using the random source s or (current-random-source) if s is not provided.

Example: Histogram of random variates from the t-distribution with 1.0 degrees
of freedom.

(require (planet "t-distribution.ss" ("williams" "science.plt" 2 0)

"random-distributions"))

(require (planet "histogram-with-graphics.ss"

("williams" "science.plt" 2 0)))

(let ((h (make-histogram-with-ranges-uniform 40 -6.0 6.0)))

(do ((i 0 (+ i 1)))

((= i 10000) (void))

(histogram-increment! h (random-t-distribution 1.0)))

(histogram-plot h "Histogram of t-Distribution"))

Figure 7.27 shows the resulting histogram.

7.12.2 T-Distribution Density Functions

t-distribution-pdf

Function: (t-distribution-pdf x nu

Contract: (-> real? real? (>=/c 0.0))

CHAPTER 7. RANDOM NUMBER DISTRIBUTIONS 73

Figure 7.27: Histogram of Random Variates from T-Distribution (1.0)

This function computes the probability density, p(x), at x for the t-distribution with
nu degrees of freedom.

7.12.3 T-Distribution Graphics

The t-distribution graphics functions are defined in the file t-distribution-graphics
.ss in the random-distributions sub-collection of the science collection and are made
available using the form:

(require (planet "t-distribution-graphics.ss"

("williams" "science.plt" 2 0)

"random-distributions"))

t-distribution-plot

Function: (t-distribution-plot nu)

Contract: (-> real? any)

This function returns a plot of the probability density of the t-distribution with nu
degrees of freedom. The plot is produced by the plot collection provided with PLT
Scheme (PLoT Scheme).

Example: Plot of probability density of the t-distribution with 1.0 degrees of free-
dom.

CHAPTER 7. RANDOM NUMBER DISTRIBUTIONS 74

(require (planet "t-distribution-graphics.ss"

("williams" "science.plt" 2 0)

"random-distributions"))

(t-distribution-plot 1.0)

Figure 7.28 shows the resulting plot.

Figure 7.28: Plot of Probability Density for T-Distribution (1.0)

7.13 The Triangular Distribution

The triangular distribution functions are defined in the triangular.ss file in the
random-distributions sub-collection of the science-collection and are made available
using the form:

(require (planet "triangular.ss" ("williams" "science.plt" 2 0)

"random-distributions"))

CHAPTER 7. RANDOM NUMBER DISTRIBUTIONS 75

7.13.1 Random Variates from the Triangular Distribution

random-triangular

Function: (random-triangular s a b c)

Function: (random-triangular a b c)

Contract: (case->

(->r ((s random-source?)

(a real?)

(b (>/c a))

(c (real-in a b)))

real?)

(->r ((a real?)

(b (>/c a))

(c (real-in a b)))

real?))

This function returns a random variate from the triangular distribution with minimum
value a, maximum value b, and most likely value c using the random source s or
(current-random-source) if s is not provided.

Example: Histogram of random variates from the triangular distribution with
minimum value 1.0, maximum value 4.0, and most likely value 2.0.

(require (planet "triangular.ss" ("williams" "science.plt" 2 0)

"random-distributions"))

(require (planet "histogram-with-graphics.ss"

("williams" "science.plt" 2 0)))

(let ((h (make-histogram-with-ranges-uniform 40 1.0 4.0)))

(do ((i 0 (+ i 1)))

((= i 10000) (void))

(histogram-increment! h (random-triangular 1.0 4.0 2.0)))

(histogram-plot h "Histogram of Triangular Distribution"))

Figure 7.29 shows the resulting histogram.

7.13.2 Triangular Distribution Density Functions

triangular-pdf

Function: (triangular-pdf x a b c)

Contract: (->r ((x real?)

(a real?)

(b (>/c a))

(c (real-in a b)))

(>=/c 0.0))

This function computes the probability density, p(x), at x for the triangular distribu-
tion with minimum value a, maximum value b, and most likely value c.

CHAPTER 7. RANDOM NUMBER DISTRIBUTIONS 76

Figure 7.29: Histogram of Random Variates from Triangular (1.0, 4.0, 2.0)

triangular-cdf

Function: (triangular-cdf x a b c)

Contract: (->r ((x real?)

(a real?)

(b (>/c a))

(c (real-in a b)))

(real-in 0.0 1.0))

This function computes the cumulative density, d(x), at x for the triangular distribu-
tion with minimum value a, maximum value b, and most likely value c.

7.13.3 Triangular Distribution Graphics

The triangular distribution graphics functions are defined in the file triangular-

graphics.ss in the random-distributions sub-collection of the science collection and
are made available using the form:

(require (planet "triangular-graphics.ss"

("williams" "science.plt" 2 0)

"random-distributions"))

CHAPTER 7. RANDOM NUMBER DISTRIBUTIONS 77

triangular-plot

Function: (triangular-plot a b c)

Contract: (->r ((a real?)

(b (>/c a))

(c (real-in a b)))

any)

This function returns a plot of the probability density and cumulative density of the
triangular distribution with minimum value a, maximum value b, and most likely
value c. The plot is produced by the plot collection provided with PLT Scheme (PLoT
Scheme).

Example: Plot of probability density of the triangular distribution with minimum
value 1.0, maximum value 4.0, and most likely value 2.0.

(require (planet "triangular-graphics.ss"

("williams" "science.plt" 2 0)

"random-distributions"))

(triangular-plot 1.0 4.0 2.0)

Figure 7.30 shows the resulting plot.

Figure 7.30: Plot of Probability Density for Triangular (1.0, 4.0, 2.0)

CHAPTER 7. RANDOM NUMBER DISTRIBUTIONS 78

7.14 The Bernoulli Distribution

The Bernoulli distribution functions are defined in the bernoulli.ss file in the random-
distributions sub-collection of the science-collection and are made available using the
form:

(require (planet "bernoulli.ss" ("williams" "science.plt" 2 0)

"random-distributions"))

7.14.1 Random Variates from the Bernoulli Distribution

random-bernoulli

Function: (random-bernoulli s p)

Function: (random-bernoulli p)

Contract: (case->

(-> random-source? (real-in 0.0 1.0) (integer-in 0 1))

(-> (real-in 0.0 1.0) (integer-in 0 1)))

This function returns a random variate from the Bernoulli distribution with probability
p using the random source s or (current-random-source) if s is not provided.

Example: Histogram of random variates from the Bernoulli distribution with prob-
ability 0.6.

(require (planet "bernoulli.ss" ("williams" "science.plt" 2 0)

"random-distributions"))

(require (planet "discrete-histogram-with-graphics.ss"

("williams" "science.plt" 2 0)))

(let ((h (make-discrete-histogram)))

(do ((i 0 (+ i 1)))

((= i 10000) (void))

(discrete-histogram-increment! h (random-bernoulli 0.6)))

(discrete-histogram-plot h "Histogram of Bernoulli Distribution"))

Figure 7.31 shows the resulting histogram.

7.14.2 Bernoulli Distribution Density Functions

bernoulli-pdf

Function: (bernoulli-pdf k p)

Contract: (-> integer? (real-in 0.0 1.0) (>=/c 0.0))

This function computes the probability density, p(k), at k for the Bernoulli distribution
with probability p.

bernoulli-cdf

Function: (bernoulli-cdf k p)

Contract: (-> integer? (real-in 0.0 1.0) (real-in 0.0 1.0))

This function computes the cumulative density, d(k), at k for the Bernoulli distribution
with probability p.

CHAPTER 7. RANDOM NUMBER DISTRIBUTIONS 79

Figure 7.31: Histogram of Random Variates from Bernoulli (0.6)

7.14.3 Bernoulli Distribution Graphics

The Bernoulli distribution graphics functions are defined in the file bernoulli-

graphics.ss in the random-distributions sub-collection of the science collection and
are made available using the form:

(require (planet "bernoulli-graphics.ss"

("williams" "science.plt" 2 0)

"random-distributions"))

bernoulli-plot

Function: (bernoulli-plot p)

Contract: (-> (real-in 0.0 1.0) any)

This function returns a plot of the probability density of the Bernoulli distribution
with probability p. The plot is produced by the plot collection provided with PLT
Scheme (PLoT Scheme).

Example: Plot of probability density of the Berboulli distribution with probability
0.6.

(require (planet "bernoulli-graphics.ss"

("williams" "science.plt" 2 0)

CHAPTER 7. RANDOM NUMBER DISTRIBUTIONS 80

"random-distributions"))

(bernoulli-plot 0.6)

Figure 7.32 shows the resulting plot.

Figure 7.32: Plot of Probability Density for Bernoulli (0.6)

7.15 The Binomial Distribution

The binomial distribution functions are defined in the binomial.ss file in the random-
distributions sub-collection of the science-collection and are made available using the
form:

(require (planet "binomial.ss" ("williams" "science.plt" 2 0)

"random-distributions"))

CHAPTER 7. RANDOM NUMBER DISTRIBUTIONS 81

7.15.1 Random Variates from the Binomial Distribution

random-binomial

Function: (random-binomial s p n)

Function: (random-binomial p n)

Contract: (case->

(-> random-source? (real-in 0.0 1.0) natural-number?

natural-number?)

(-> (real-in 0.0 1.0) natural-number? natural-number?))

This function returns a random variate from the binomial distribution with parameters
p and n using the random source s or (current-random-source) if s is not provided.

Example: Histogram of random variates from the binomial distribution with pa-
rameters 0.5 and 20.

(require (planet "binomial.ss" ("williams" "science.plt" 2 0)

"random-distributions"))

(require (planet "discrete-histogram-with-graphics.ss"

("williams" "science.plt" 2 0)))

(let ((h (make-discrete-histogram)))

(do ((i 0 (+ i 1)))

((= i 10000) (void))

(discrete-histogram-increment! h (random-binomial 0.5 20)))

(discrete-histogram-plot h "Histogram of Binomial Distribution"))

Figure 7.33 shows the resulting histogram.

7.15.2 Binomial Distribution Density Functions

binomial-pdf

Function: ((binomial-pdf k p n)

Contract: (-> integer? (real-in 0.0 1.0) natural-number? (>=/c 0.0))

This function computes the probability density, p(k), at k for the binomial distribution
with parameters p and n.

7.15.3 Binomial Distribution Graphics

The binomial distribution graphics functions are defined in the file binomial-graphics-
.ss in the random-distributions sub-collection of the science collection and are made
available using the form:

(require (planet "binomial-graphics.ss" ("williams" "science.plt" 2 0)

"random-distributions"))

binomial-plot

Function: (binomial-plot p n)

Contract: (-> (real-in 0.0 1.0) natural-number? any)

CHAPTER 7. RANDOM NUMBER DISTRIBUTIONS 82

Figure 7.33: Histogram of Random Variates from Binomial (0.5, 20)

This function returns a plot of the probability density of the binomial distribution
with parameters p and n. The plot is produced by the plot collection provided with
PLT Scheme (PLoT Scheme).

Example: Plot of probability density of the binomial distribution with parameters
0.5 and 20.

(require (planet "binomial-graphics.ss" ("williams" "science.plt" 2 0)

"random-distributions"))

(binomial-plot 0.5 20)

Figure 7.34 shows the resulting plot.

7.16 The Geometric Distribution

The geometric distribution functions are defined in the geometric.ss file in the
random-distributions sub-collection of the science-collection and are made available
using the form:

(require (planet "geometric.ss" ("williams" "science.plt" 2 0)

"random-distributions"))

CHAPTER 7. RANDOM NUMBER DISTRIBUTIONS 83

Figure 7.34: Plot of Probability Density for Binomial (0.5 20)

7.16.1 Random Variates from the Geometric Distribution

random-geometric

Function: (random-geometric s p)

Function: (random-geometric p)

Contract: (case->

(-> random-source? (real-in 0.0 1.0) natural-number?)

(-> (real-in 0.0 1.0) natural-number?))

This function returns a random variate from the geometric distribution with proba-
bility p using the random source s or (current-random-source) if s is not provided.

Example: Histogram of random variates from the geometric distribution with prob-
ability 0.5.

(require (planet "geometric.ss" ("williams" "science.plt" 2 0)

"random-distributions"))

(require (planet "discrete-histogram-with-graphics.ss"

("williams" "science.plt" 2 0)))

(let ((h (make-discrete-histogram)))

(do ((i 0 (+ i 1)))

((= i 10000) (void))

(discrete-histogram-increment! h (random-geometric 0.5)))

CHAPTER 7. RANDOM NUMBER DISTRIBUTIONS 84

(discrete-histogram-plot h "Histogram of Geometric Distribution"))

Figure 7.35 shows the resulting histogram.

Figure 7.35: Histogram of Random Variates from Geometric (0.5)

7.16.2 Geometric Distribution Density Functions

geometric-pdf

Function: (geometric-pdf k p)

Contract: (-> integer? (real-in 0.0 1.0) (>=/c 0.0))

This function computes the probability density, p(k), at k for the geometric distribu-
tion with probability p.

7.16.3 Geometric Distribution Graphics

The geometric distribution graphics functions are defined in the file geometric-

graphics.ss in the random-distributions sub-collection of the science collection and
are made available using the form:

(require (planet "geometric-graphics.ss" ("williams" "science.plt" 2 0)

"random-distributions"))

CHAPTER 7. RANDOM NUMBER DISTRIBUTIONS 85

geometric-plot

Function: (geometric-plot p)

Contract: (-> (real-in 0.0 1.0) any)

This function returns a plot of the probability density of the geometric distribution
with probability p. The plot is produced by the plot collection provided with PLT
Scheme (PLoT Scheme).

Example: Plot of probability density of the geometric distribution with probability
0.5.

(require (planet "geometric-graphics.ss" ("williams" "science.plt" 2 0)

"random-distributions"))

(binomial-plot 0.5)

Figure 7.36 shows the resulting plot.

Figure 7.36: Plot of Probability Density for Geometric (0.5)

7.17 The Logarithmic Distribution

The logarithmic distribution functions are defined in the logarithmic.ss file in the
random-distributions sub-collection of the science-collection and are made available
using the form:

CHAPTER 7. RANDOM NUMBER DISTRIBUTIONS 86

(require (planet "logarithmic.ss" ("williams" "science.plt" 2 0)

"random-distributions"))

7.17.1 Random Variates from the Logarithmic Distribu-
tion

random-logarithmic

Function: (random-logarithmic s p)

Function: (random-logarithmic p)

Contract: (case->

(-> random-source? (real-in 0.0 1.0) natural-number?)

(-> (real-in 0.0 1.0) natural-number?))

This function returns a random variate from the logarithmic distribution with proba-
biliity p using the random source s or (current-random-source) if s is not provided.

Example: Histogram of random variates from the logarithmic distribution with
probability 0.5.

(require (planet "logarithmic.ss" ("williams" "science.plt" 2 0)

"random-distributions"))

(require (planet "discrete-histogram-with-graphics.ss"

("williams" "science.plt" 2 0)))

(let ((h (make-discrete-histogram)))

(do ((i 0 (+ i 1)))

((= i 10000) (void))

(discrete-histogram-increment! h (random-logarithmic 0.5)))

(discrete-histogram-plot h "Histogram of Logarithmic Distribution"))

Figure 7.37 shows the resulting histogram.

7.17.2 Logarithmic Distribution Density Functions

logarithmic-pdf

Function: (logarithmic-pdf k p)

Contract: (-> integer? (real-in 0.0 1.0) (>=/c 0.0))

This function computes the probability density, p(k), at k for the logarithmic distri-
bution with probability p.

7.17.3 Logarithmic Distribution Graphics

The logarithmic distribution graphics functions are defined in the file logarithmic-

graphics.ss in the random-distributions sub-collection of the science collection and
are made available using the form:

(require (planet "logarithmic-graphics.ss"

("williams" "science.plt" 2 0)

"random-distributions"))

CHAPTER 7. RANDOM NUMBER DISTRIBUTIONS 87

Figure 7.37: Histogram of Random Variates from Logarithmic (0.5)

logarithmic-plot

Function: (logarithmic-plot p)

Contract: (-> (real-in 0.0 1.0) any)

This function returns a plot of the probability density of the logarithmic distribution
with probability p. The plot is produced by the plot collection provided with PLT
Scheme (PLoT Scheme).

Example: Plot of probability density of the logarithmic distribution with proba-
bility 0.5.

(require (planet "logarithmic-graphics.ss"

("williams" "science.plt" 2 0)

"random-distributions"))

(logarithmic-plot 0.5)

Figure 7.38 shows the resulting plot.

7.18 The Poisson Distribution

The Poisson distribution functions are defined in the poisson.ss file in the random-
distributions sub-collection of the science-collection and are made available using the
form:

CHAPTER 7. RANDOM NUMBER DISTRIBUTIONS 88

Figure 7.38: Plot of Probability Density for Logarithmic (0.5)

(require (planet "poisson.ss" ("williams" "science.plt" 2 0)

"random-distributions"))

7.18.1 Random Variates from the Poisson Distribution

random-poisson

Function: (random-poisson s mu)

Function: (random-poisson mu)

Contract: (case->

(-> random-source? real? natural-number?)

(-> real? natural-number?))

This function returns a random variate from the Poisson distribution with mean mu
using the random source s or (current-random-source) if s is not provided.

Example: Histogram of random variates from the Poisson distribution with mean
10.0.

(require (planet "poisson.ss" ("williams" "science.plt" 2 0)

"random-distributions"))

(require (planet "discrete-histogram-with-graphics.ss"

("williams" "science.plt" 2 0)))

CHAPTER 7. RANDOM NUMBER DISTRIBUTIONS 89

(let ((h (make-discrete-histogram)))

(do ((i 0 (+ i 1)))

((= i 10000) (void))

(discrete-histogram-increment! h (random-poisson 10.0)))

(discrete-histogram-plot h "Histogram of Poisson Distribution"))

Figure 7.39 shows the resulting histogram.

Figure 7.39: Histogram of Random Variates from Poisson (10.0)

7.18.2 Poisson Distribution Density Functions

poisson-pdf

Function: (poisson-pdf k mu)

Contract: (-> integer? real? (>=/c 0.0))

This function computes the probability density, p(k), at k for the Poisson distribution
with mean mu.

7.18.3 Poisson Distribution Graphics

The Poisson distribution graphics functions are defined in the file poisson-graphics

.ss in the random-distributions sub-collection of the science collection and are made
available using the form:

CHAPTER 7. RANDOM NUMBER DISTRIBUTIONS 90

(require (planet "poisson-graphics.ss" ("williams" "science.plt" 2 0)

"random-distributions"))

poisson-plot

Function: (poisson-plot mu)

Contract: (-> (>/c 0.0) any)

This function returns a plot of the probability density of the Poisson distribution with
mean mu. The plot is produced by the plot collection provided with PLT Scheme
(PLoT Scheme).

Example: Plot of probability density of the Poisson distribution with mean 10.0.

(require (planet "poisson-graphics.ss" ("williams" "science.plt" 2 0)

"random-distributions"))

(poisson-plot 10.0)

Figure 7.40 shows the resulting plot.

Figure 7.40: Plot of Probability Density for Poisson (10.0)

CHAPTER 7. RANDOM NUMBER DISTRIBUTIONS 91

7.19 The General Discrete Distribution

The discrete distribution functions are defined in the discrete.ss file in the random-
distributions sub-collection of the science-collection and are made available using the
form:

(require (planet "discrete.ss" ("williams" "science.plt" 2 0)

"random-distributions"))

discrete?

Function: (discrete? x)

Contract: (-> any? boolean?)

This function returns true, #t, if x is a discrete distribution and false, #f, otherwise.

7.19.1 Creating Discrete Distributions

make-discrete

Function: (make-discrete weights)

Contract: (-> (vectorof real?) discrete?)

This function returns a discrete distribution whose probability density is given by the
specified weights. Note that the weights do not have to sum to one.

7.19.2 Random Variates from a Discrete Distribution

random-discrete

Function: (random-discrete s d)

Function: (random-discrete d)

Contract: (case->

(-> random-source? discrete?)

(-> discrete?))

This function returns a random variate from the discrete distribution d using the
random source s or (current-random-source) if s is not provided.

Example: Histogram of random variates from a discrete distribution with weights
#(.1 .4 .9 .8 .7 .6 .5 .4 .3 .2 .1).

(require (planet "discrete.ss" ("williams" "science.plt" 2 0)

"random-distributions"))

(require (planet "discrete-histogram-with-graphics.ss"

("williams" "science.plt" 2 0)))

(let ((h (make-discrete-histogram))

(d (make-discrete #(.1 .4 .9 .8 .7 .6 .5 .4 .3 .2 .1))))

(do ((i 0 (+ i 1)))

((= i 10000) (void))

(discrete-histogram-increment! h (random-discrete d)))

(discrete-histogram-plot h "Histogram of Discrete Distribution"))

Figure 7.41 shows the resulting histogram.

CHAPTER 7. RANDOM NUMBER DISTRIBUTIONS 92

Figure 7.41: Histogram of Random Variates from a Discrete Distribution

7.19.3 Discrete Distribution Density Functions

discrete-pdf

Function: (discrete-pdf d k)

Contract: (-> discrete? integer? (real-in 0.0 1.0))

This function returns the probability density, p(k), at k for the discrete distribution
d.

discrete-cdf

Function: (discrete-cdf d k)

Contract: (-> discrete? integer? (real-in 0.0 1.0)

This function returns the cumulative density, d(k), at k for the discrete distribution
d.

7.19.4 General Discrete Distribution Graphics

The general discrete distribution graphics functions are defined in the file discrete-

graphics.ss in the random-distributions sub-collection of the science collection and
are made available using the form:

CHAPTER 7. RANDOM NUMBER DISTRIBUTIONS 93

(require (planet "discrete-graphics.ss" ("williams" "science.plt" 2 0)

"random-distributions"))

discrete-plot

Function: (discrete-plot d)

Contract: (-> discrete? any)

This function returns a plot of the probability density of the general distribution d.
The plot is produced by the plot collection provided with PLT Scheme (PLoT Scheme).

Example: Plot of probability density of the Poisson distribution with mean 10.0.

(require (planet "discrete.ss" ("williams" "science.plt" 2 0)

"random-distributions"))

(require (planet "discrete-graphics.ss" ("williams" "science.plt" 2 0)

"random-distributions"))

(let ((d (make-discrete #(.1 .4 .9 .8 .7 .6 .5 .4 .3 .2 .1))))

(discrete-plot d))

Figure 7.42 shows the resulting plot.

Figure 7.42: Plot of Probability Density for a General Discrete Distribution

Chapter 8

Statistics

This chapter describes the statistical functions provided by the PLT Scheme Science
Collection. The basic statistical functions include functions to compute the mean,
variance, and standard deviation. More advanced functions allow you to calculate
absolute deviation, skewness, and kurtosis, as well as the median and arbitrary per-
centiles. The algorithms use recurrance relations to compute average quantities in a
stable way, without large intermediate values that might overflow.

The functions described in this chapter are defined in the statistics.ss file in
the science collection and are made available ising the following form:

(require (planet "statistics.ss" ("williams" "science.plt" 2 0)))

8.1 Mean, Standard Deviation, and Variance

mean

Function: (mean data)

Contract: (-> (vectorof real?) real?)

This function returns the arithmetic mean of data.

variance

Function: (variance data mu)

Function: (variance data)

Contract: (case->

(-> (vector-of real?) real? (>=/c 0.0))

(-> (vector-of real?) (>=/c 0.0)))

This function returns the sample variance of data. If mu is not provided, it is calculated
by a call to (mean data).

94

CHAPTER 8. STATISTICS 95

standard-deviation

Function: (standard-deviation data mu)

Function: (standard-deviation data)

Contract: (case->

(-> (vector-of real?) real? (>=/c 0.0))

(-> (vector-of real?) (>=/c 0.0)))

The standard deviation is defined as the square root of the variance. This function
returns the square root of the corresponding variance function above.

variance-with-fixed-mean

Function: (variance-with-fixed-mean data mu)

Contract: (-> (vector-of real?) real? (>=/c 0.0))

This function returns an unbiased estimate of the variance of data when the population
mean, mu, of the underlying distribution is known a priori.

standard-deviation-with-fixed-mean

Function: (standard-deviation-with-fixed-mean data mu)

Contract: (-> (vector-of real?) real> (>=/c 0.0))

This function returns the standard deviation of data with a fixed population mean,
mu. The result is the square root of the variance-with-fixed-mean function.

8.2 Absolute Deviation

absolute-deviation

Function: (absolute-deviation data mu)

Function: (absolute-deviation data)

Contract: (case->

(-> (vector-of real?) real? (>=/c 0.0))

(-> (vector-of real?) (>=/c 0.0)))

This function returns the absolute deviation of data relative to the given value of the
mean, mu. If mu is not provided, it is calculated by a call to (mean data). This
function is also useful if you want to calculate the absolute deviation relative to any
value other than the mean, such as zero or the median.

8.3 Higher Moments (Skewness and Kurtosis)

skew

Function: (skew data mu sigma)

Function: (skew data)

Contract: (case->

(-> (vector-of real?) real? (>=/c 0.0) real?)

(-> (vector-of real?) real?)))

CHAPTER 8. STATISTICS 96

The shewness measures the symmetry of the tails of a distribution. This function
returns the skewness of data using the given values of the mean, mu and standard
deviation, sigma. If mu and sigma are not provided, they are calculated by calls to
(mean data) and (standard-deviation data mu).

kurtosis

Function: (kurtosis data mu sigma)

Function: (kurtosis data)

Contract: (case->

(-> (vector-of real?) real? (>=/c 0.0) real?)

(-> (vector-of real?) real?)))

The kurtosis measures how sharply peaked a distribution is relative to its width. This
function returns the kurtosis of data using the given values of the mean, mu and
standard deviation, sigma. If mu and sigma are not provided, they are calculated by
calls to (mean data) and (standard-deviation data mu).

8.4 Autocorrelation

lag-1-autocorrelation

Function: (lag-1-autocorrelation data mu)

Function: (lag-1-autocorrelation data)

Contract: (case->

(-> non-empty-vector-of-reals real? real?)

(-> non-empty-vector-of-reals real?))

This function returns the lag-1 autocorrelation of data using the given value of the
mean, mu. If mu is not provided, it is calculated by a call to (mean data).

CHAPTER 8. STATISTICS 97

8.5 Covariance

covariance

Function: (covariance data1 data 2 mu1 mu2)

Function: (covariance data1 data2)

Contract: (case->

(->r ((data1 (vectorof real?))

(data2 (and/c (vectorof real?)

(lambda (x)

(= (vector-length data1)

(vector-length data2)))))

(mu1 real?)

(mu2 real?))

real?)

(->r ((data1 (vectorof real?))

(data2 (and/c (vectorof real?)

(lambda (x)

(= (vector-length data1)

(vector-length data2)))))

real?))

This function returns the covariance of data1 and data2, which must both be the same
length, using the given values of the means, mu1 and mu2. If the values of mu1 and
mu2 are not given, they are calculated using calls to (mean data1) and (mean data2),
respectively.

covariance-with-fixed-means

Function: (covariance-with-fixed-means data1 data2)

Contract: (->r ((data1 (vectorof real?))

(data2 (and/c (vectorof real?)

(lambda (x)

(= (vector-length data1)

(vector-length data2)))))

(mu1 real?)

(mu2 real?))

real?)

This function returns the covariance of data1 and data2, which must both be the same
length, when the population means, mu1 and mu2, of the underlying distributions are
known a priori.

CHAPTER 8. STATISTICS 98

8.6 Weighted Samples

weighted-mean

Function: (weighted-mean w data)

Contract: (->r ((w (vectorof real?))

(data (and/c (vectorof real?)

(lambda (x)

(= (vector-length w)

(vector-length data))))))

real?)

This function returns the weighted mean of data using weights w.

weighted-variance

Function: (weighted-variance w data wmu)

Function: (weighted-variance w data)

Contract: (case->

(->r ((w (vectorof real?))

(data (and/c (vectorof real?)

(lambda (x)

(= (vector-length w)

(vector-length data)))))

(mu real?)

(>=/c 0.0))

(->r ((w (vectorof real?))

(data (and/c (vectorof real?)

(lambda (x)

(= (vector-length w)

(vector-length data)))))

(>=/c 0.0)))

This function returns the weighted variance of data using weights w and the given
weighted mean, wmu. If wmu is not provided, it is calculated by a call to (weighted-

mean w data).

CHAPTER 8. STATISTICS 99

weighted-standard-deviation

Function: (weighted-standard-deviation w data wmu)

Function: (weighted-standard-deviation w data)

Contract: (case->

(->r ((w (vectorof real?))

(data (and/c (vectorof real?)

(lambda (x)

(= (vector-length w)

(vector-length data)))))

(mu real?)

(>=/c 0.0))

(->r ((w (vectorof real?))

(data (and/c (vectorof real?)

(lambda (x)

(= (vector-length w)

(vector-length data)))))

(>=/c 0.0)))

The standard deviation is defined as the square root of the variance. This function
returns the square root of the corresponding weighted-variance function above.

weighted-variance-with-fixed-mean

Function: (weighted-variance-with-fixed-mean w data wmu)

Contract: (->r ((w (vectorof real?))

(data (and/c (vectorof real?)

(lambda (x)

(= (vector-length w)

(vector-length data)))))

(mu real?)

(>=/c 0.0))

This function returns an unbiased estimate of the weighted variance of data using
weights w when the weighted population mean, wmu, of the underlying distribution
is known a priori.

weighted-standard-deviation-with-fixed-mean

Function: (weighted-standard-deviation-with-fixed-mean w data wmu)

Contract: (->r ((w (vectorof real?))

(data (and/c (vectorof real?)

(lambda (x)

(= (vector-length w)

(vector-length data)))))

(mu real?)

(>=/c 0.0))

This function returns the weighted standard deviation of data using weights w with a
fixed weighted population mean, wmu. The result is the square root of the weighted-

variance-with-fixed-mean function.

CHAPTER 8. STATISTICS 100

weighted-absolute-deviation

Function: (weighted-absolute-deviation w data wmu)

Function: (weighted-absolute-deviation w data)

Contract: (case->

(->r ((w (vectorof real?))

(data (and/c (vectorof real?)

(lambda (x)

(= (vector-length w)

(vector-length data)))))

(mu real?)

(>=/c 0.0))

(->r ((w (vectorof real?))

(data (and/c (vectorof real?)

(lambda (x)

(= (vector-length w)

(vector-length data)))))

(>=/c 0.0)))

This function returns the weighted absolute deviation of data using weights s relative to
the given value of the weighted mean, wmu. If wmu is not provided, it is calculated by
a call to (weighted-mean w data). This function is also useful if you want to calculate
the weighted absolute deviation relative to any value other than the weighted mean,
such as zero or the weighted median.

weighted-skew

Function: (weighted-skew w data wmu wsigma)

Function: (weighted-skew w data)

Contract: (case->

(->r ((w (vectorof real?))

(data (and/c (vectorof real?)

(lambda (x)

(= (vector-length w)

(vector-length data)))))

(mu real?)

(sigma (>=/c 0.0)))

real?)

(->r ((w (vectorof real?))

(data (and/c (vectorof real?)

(lambda (x)

(= (vector-length w)

(vector-length data)))))

real?))

The shewness measures the symmetry of the tails of a distribution. This func-
tion returns the weighted skewness of data using weights w and the given values
of the weighted mean, wmu and weighted standard deviation, wsigma. If wmu and
wsigma are not provided, they are calculated by calls to (weighted-mean w data) and
(weighted-standard-deviation w data wmu).

CHAPTER 8. STATISTICS 101

weighted-kurtosis

Function: (weighted-kurtosis w data wmu wsigma)

Function: (weighted-kurtosis w data)

Contract: (case->

(->r ((w (vectorof real?))

(data (and/c (vectorof real?)

(lambda (x)

(= (vector-length w)

(vector-length data)))))

(mu real?)

(sigma (>=/c 0.0)))

real?)

(->r ((w (vectorof real?))

(data (and/c (vectorof real?)

(lambda (x)

(= (vector-length w)

(vector-length data)))))

real?))

The kurtosis measures how sharply peaked a distribution is relative to its width. This
function returns the weighted kurtosis of data using weights w and the given values
of the weighted mean, wmu and weighted standard deviation, wsigma. If wmu and
wsigma are not provided, they are calculated by calls to (weighted-mean w data) and
(weighted-standard-deviation w data wmu).

8.7 Maximum and Minimum

maximum

Function: (maximum data

Contract: (-> non-empty-vector-of-reals? real?)

This function returns the maximum value in data.

minimum

Function: (minimun data

Contract: (-> non-empty-vector-of-reals? real?)

This function returns the minimum value in data.

minimum-maximum

Function: (minimun-maximum data

Contract: (-> non-empty-vector-of-reals? (values real? real?))

This function returns the minimum and maximum values in data as multiple values.

CHAPTER 8. STATISTICS 102

maximum-index

Function: (maximum-index data

Contract: (-> non-empty-vector-of-reals? natural-number?)

This function returns the index of the maximum value in data. When there are several
equal maximum elements, the index of the first one is chosen.

minimum-index

Function: (minimun-index data

Contract: (-> non-empty-vector-of-reals? natural-number?)

This function returns the index of the minimum value in data. When there are several
equal minimum elements, the index of the first one is chosen.

minimum-maximum-index

Function: (minimun-maximum-index data

Contract: (-> non-empty-vector-of-reals?

(values natural-number? number?))

This function returns the indices of the minimum and maximum values in data as
multiple values. When there are several equal minimum or maximum elements, the
index of the first ones are chosen.

8.8 Median and Percentiles

The median and percentile functions described in this section operate on sorted data.
The contracts for these functions enforce this. Also, for convenience we use quantiles
measured on a scale of 0 to 1 instead of percentiles (which use a scale of 0 to 100).

median-from-sorted-data

Function: (median-from-sorted-data sorted-data

Contract: (-> (and/c non-empty-vector-of-reals? sorted?)

real?)

This function returns the median value of sorted-data. When the dataset has an odd
number of elements, the median is the value of element (n − 1)/2. When the dataset
has an even number of elements, the median is the mean of the two nearest middle
values, elements (n − 1)/2 and n/2.

quantile-from-sorted-data

Function: (qualtile-from-sorted-data sorted-data f

Contract: (-> (and/c non-empty-vector-of-reals? sorted?)

(real-in 0.0 1.0) real?)

This function returns a quantile calue of sorted-data. The quantile is determined by
the value f, a fraction between 0 and 1. For example, to compute the value of the 75th

percentile, f should have the value 0.75.

CHAPTER 8. STATISTICS 103

The quantile is found by interpolation using the formula

quantile = 1 − delta(x[i]) + delta(x[i + 1])

where i is floor((n − 1)f) and delta is (n − 1)f − 1.

8.9 Example

This example generates two vectors of data from a unit Gaussian distribution and a
vector of cosine squared weighting data. All of the vectors are of length 1,000. These
data are used to test all of the statistics functions.

(require (planet "gaussian.ss" ("williams" "science.plt" 2 0)

"random-distributions"))

(require (planet "statistics.ss" ("williams" "science.plt" 2 0)))

(require (planet "math.ss" ("williams" "science.plt" 2 0)))

(define (naive-sort! data)

(let loop ()

(let ((n (vector-length data))

(sorted? #t))

(do ((i 1 (+ i 1)))

((= i n) data)

(if (< (vector-ref data i)

(vector-ref data (- i 1)))

(let ((t (vector-ref data i)))

(vector-set! data i (vector-ref data (- i 1)))

(vector-set! data (- i 1) t)

(set! sorted? #f))))

(if (not sorted?)

(loop)))))

(let ((data1 (make-vector 1000))

(data2 (make-vector 1000))

(w (make-vector 1000)))

(do ((i 0 (+ i 1)))

((= i 1000) (void))

;; Random data from unit gaussian

(vector-set! data1 i (random-unit-gaussian))

(vector-set! data2 i (random-unit-gaussian))

;; Cos^2 weighting

(vector-set! w i

(expt (cos (- (* 2.0 pi (/ i 1000.0)) pi)) 2)))

(printf "Statistics Example~n")

(printf " mean = ~a~n"

(mean data1))

(printf " variance = ~a~n"

(variance data1))

(printf " standard deviation = ~a~n"

(standard-deviation data1))

CHAPTER 8. STATISTICS 104

(printf " variance from 0.0 = ~a~n"

(variance-with-fixed-mean data1 0.0))

(printf " standard deviation from 0.0 = ~a~n"

(standard-deviation-with-fixed-mean data1 0.0))

(printf " absolute deviation = ~a~n"

(absolute-deviation data1))

(printf " absolute deviation from 0.0 = ~a~n"

(absolute-deviation data1 0.0))

(printf " skew = ~a~n"

(skew data1))

(printf " kurtosis = ~a~n"

(kurtosis data1))

(printf " lag-1 autocorrelation = ~a~n"

(lag-1-autocorrelation data1))

(printf " covariance = ~a~n"

(covariance data1 data2))

(printf " weighted mean = ~a~n"

(weighted-mean w data1))

(printf " weighted variance = ~a~n"

(weighted-variance w data1))

(printf " weighted standard deviation = ~a~n"

(weighted-standard-deviation w data1))

(printf " weighted variance from 0.0 = ~a~n"

(weighted-variance-with-fixed-mean w data1 0.0))

(printf "weighted standard deviation from 0.0 = ~a~n"

(weighted-standard-deviation-with-fixed-mean w data1 0.0))

(printf " weighted absolute deviation = ~a~n"

(weighted-absolute-deviation w data1))

(printf "weighted absolute deviation from 0.0 = ~a~n"

(weighted-absolute-deviation w data1 0.0))

(printf " weighted skew = ~a~n"

(weighted-skew w data1))

(printf " weighted kurtosis = ~a~n"

(weighted-kurtosis w data1))

(printf " maximum = ~a~n"

(maximum data1))

(printf " minimum = ~a~n"

(minimum data1))

(printf " index of maximum value = ~a~n"

(maximum-index data1))

(printf " index of minimum value = ~a~n"

(minimum-index data1))

(naive-sort! data1)

(printf " median = ~a~n"

(median-from-sorted-data data1))

(printf " 10% quantile = ~a~n"

(quantile-from-sorted-data data1 .1))

(printf " 20% quantile = ~a~n"

(quantile-from-sorted-data data1 .2))

(printf " 30% quantile = ~a~n"

CHAPTER 8. STATISTICS 105

(quantile-from-sorted-data data1 .3))

(printf " 40% quantile = ~a~n"

(quantile-from-sorted-data data1 .4))

(printf " 50% quantile = ~a~n"

(quantile-from-sorted-data data1 .5))

(printf " 60% quantile = ~a~n"

(quantile-from-sorted-data data1 .6))

(printf " 70% quantile = ~a~n"

(quantile-from-sorted-data data1 .7))

(printf " 80% quantile = ~a~n"

(quantile-from-sorted-data data1 .8))

(printf " 90% quantile = ~a~n"

(quantile-from-sorted-data data1 .9))

)

CHAPTER 8. STATISTICS 106

Produces the following output:

Statistics Example

mean = 0.03457693091555611

variance = 1.0285343857083422

standard deviation = 1.0141668431320077

variance from 0.0 = 1.028701415474174

standard deviation from 0.0 = 1.014249188056946

absolute deviation = 0.7987180852601665

absolute deviation from 0.0 = 0.7987898146946209

skew = 0.043402934671178436

kurtosis = 0.17722452271704014

lag-1 autocorrelation = 0.0029930889831972143

covariance = 0.005782911085590894

weighted mean = 0.05096139259270008

weighted variance = 1.0500293763787367

weighted standard deviation = 1.0247094107007786

weighted variance from 0.0 = 1.0510513958491579

weighted standard deviation from 0.0 = 1.0252079768755011

weighted absolute deviation = 0.8054378524718832

weighted absolute deviation from 0.0 = 0.8052440544958938

weighted skew = 0.046448729539282155

weighted kurtosis = 0.3050060704791675

maximum = 3.731148814104969

minimum = -3.327265864298485

index of maximum value = 502

index of minimum value = 476

median = 0.019281803306206644

10% quantile = -1.243869878615807

20% quantile = -0.7816243947573505

30% quantile = -0.4708703241429585

40% quantile = -0.2299309332835332

50% quantile = 0.019281803306206644

60% quantile = 0.30022966479982344

70% quantile = 0.5317978807508836

80% quantile = 0.832291888537874

90% quantile = 1.3061151234700463

Chapter 9

Histograms

This chapter describes the functions for creating and using histograms provided by the
PLT Scheme Science Collection. Histograms provide a convenient way of summarizing
the distribution of a set of data. A histogram contains a vector of bins that count the
number of events falling into a given range. The bins of a histogram can be used to
record both integer and non-integer distributions.

The ranges of the bins can be either continuous or discrete over a range. For
continuous ranges, the width of these ranges can be either fixed or arbitrary. Also, for
continuous ranges, both one and two dimensional histograms are supported.

9.1 1D Histograms

The 1D histogram functions described in this section are defined in the histogram.ss

file in the science collection and are made available using the following form:

(require (planet "histogram.ss" ("williams" "science.plt" 2 0)))

histogram?

Function: (histogram? x)

Contract: (-> any? boolean?)

This function returns true, #t, if x is a histogram and false, #f otherwise.

9.1.1 Creating 1D Histograms

make-histogram

Function: (make-histogram n)

Contract: (-> (integer-in 1 +inf.0) histogram?)

This function returns a new, empty histogram with n bins and n + 1 range entries.
The range entries must be set with a subsequent call to set-histogram-ranges! or
set-histogram-ranges-uniform!.

107

CHAPTER 9. HISTOGRAMS 108

make-histogram-with-ranges-uniform

Function: (make-histogram-with-ranges-uniform n x-min x-max)

Contract: (->r ((n (integer-in 1 +inf.0)

(x-min real?)

(x-max (>/c x-min)))

histogram?)

This function returns a new, empty histogram with n bins. The n + 1 range entries
are initialized to provide n uniform width bins from x-min to x-max.

9.1.2 Updating and Accessing 1D Histogram Elements

histogram-n

Function: (histogram-n h)

Contract: (-> histogram? (integer-in 1 +inf.0))

This function returns the number of bins in the histogram h.

histogram-ranges

Function: (histogram-ranges h)

Contract: (-> histogram? (vectorof real?))

This function returns the vector of ranges for the histogram h. The length of the
vector is equal to the number of bins in h plus one.

set-histogram-ranges!

Function: (set-histogram-ranges! h ranges)

Contract: (-> histogram? (vectorof real?) void?)

This function sets the ranges for the histogram h according to the given ranges. The
length of the ranges vector must be equal to the number of bins in h plus one. The
bins in h are also reset.

set-histogram-ranges-uniform!

Function: (set-histogram-ranges-uniform! h x-min x-max)

Contract: (->r ((h histogram?)

(x-min real?)

(x-max (>/c x-min)))

void?)

This function sets the ranges for the histogram h uniformly from x-min to x-max. The
bins in h are also reset.

histogram-bins

Function: (histogram-bins h)

Contract: (-> histogram? (vectorof real?))

This functions returns the vector of bins for the histogram h.

CHAPTER 9. HISTOGRAMS 109

histogram-increment!

Function: (histogram-increment! h x)

Contract: (-> histogram? real? void?)

This function increments the bin in the histogram h containing x. The bin value is
incremented by one.

histogram-accumulate!

Function: (histogram-accumulate! h x weight)

Contract: (-> histogram? real (>-/c 0.0) void?)

This function increments the bin in the histogram h containing x by the specified
weight.

histogram-get

Function: (histogram-get h i)

Contract: (-> histogram? natural-number? (>=/c 0.0))

This functions returns the contents of the ith bin of the histogram h.

histogram-get-range

Function: (histogram-get-range h i)

Contract: (-> histogram? natural-number? (values real? real?))

This function returns the upper and lower range limits for the ith bin of the histogram
h. The upper and lower range limits are returned as multiple values.

9.1.3 1D Histogram Statistics

histogram-max

Function: (histogram-max h)

Contract: (-> histogram? (>=/c 0.0))

This function returns the maximum bin value in the histogram h. Since in this imple-
mentation bin values are non-negative, the maximum value is also non-negative.

histogram-min

Function: (histogram-min h)

Contract: (-> histogram? (>=/c 0.0))

This function returns the minimum bin value in the histogram h. Since in this imple-
mentation bin values are non-negative, the minimum value is also non-negative.

histogram-mean

Function: (histogram-mean h)

Contract: (-> histogram? (>=/c 0.0))

This function returns the mean of the data in the histogram h.

CHAPTER 9. HISTOGRAMS 110

histogram-sigma

Function: (histogram-sigma h)

Contract: (-> histogram? (>=/c 0.0))

This function returns the standard deviation of the data in the histogram h.

histogram-sum

Function: (histogram-sum h)

Contract: (-> histogram? (>=/c 0.0))

This function returns the sum of the data in the histogram h.

9.1.4 1D Histogram Graphics

The histogram graphics functions are defined in the file histogram-graphics.ss in
the science collection and are made available using the following form:

(require (planet "histogram-graphics.ss" ("williams" "science.plt" 2 0)))

histogram-plot

Function: (histogram-plot h title)

Function: (histogram-plot h)

Contract: (case->

(-> histogram? string? any)

(-> histogram? any))

This function returns a plot of the histogram h with the specified title. If title is not
specified, "Histogram" is used. The plot is scaled to the maximum bin value. The
plot is produced by the histogram plotting extension to the plot collection provided
with PLT Scheme (PLoT Scheme).

histogram-plot-scaled

Function: (histogram-plot-scaled h title)

Function: (histogram-plot-scaled h)

Contract: (case->

(-> histogram? string? any)

(-> histogram? any))

This function returns a plot of the histogram h with the specified title. If title is not
specified, "Histogram" is used. The plot is scaled to the sum of the bin values. It is
most useful for a small number of bin - generally, ten or less. The plot is produced
by the histogram plotting extension to the plot collection provided with PLT Scheme
(PLoT Scheme).

CHAPTER 9. HISTOGRAMS 111

9.1.5 Examples

Example: Plot of histogram of random variates from the unit Gaussian (normal)
distribution.

(require (planet "gaussian.ss" ("williams" "science.plt" 2 0)

"random-distributions"))

(require (planet "histogram-with-graphics.ss"

("williams" "science.plt" 2 0)))

(let ((h (make-histogram-with-ranges-uniform 40 -3.0 3.0)))

(do ((i 0 (+ i 1)))

((= i 10000) (void))

(histogram-increment! h (random-unit-gaussian)))

(histogram-plot h "Histogram of Unit Gaussian Distribution"))

Figure 9.1 shows the resulting histogram.

Figure 9.1: Histogram of Random Variates from Unit Gaussian (Normal)

Example: Scaled plot of histogram of random variates from the exponential dis-
tribution with mean 1.0.

(require (planet "exponential.ss" ("williams" "science.plt" 2 0)

"random-distributions"))

(require (planet "histogram-with-graphics.ss"

("williams" "science.plt" 2 0)))

CHAPTER 9. HISTOGRAMS 112

(let ((h (make-histogram-with-ranges-uniform 10 0.0 8.0)))

(do ((i 0 (+ i 1)))

((= i 10000) (void))

(histogram-increment! h (random-exponential 1.0)))

(histogram-plot-scaled

h "Scaled Histogram of Exponential Distribution"))

Figure 9.2 shows the resulting histogram.

Figure 9.2: Scaled Histogram of Random Variates from Exponential (1.0))

9.2 2D Histograms

The 2D histogram functions described in this chapter are defined in the histogram-2d
.ss file in the science collection and are made available using the following form:

(require (planet "histogram-2d.ss" ("williams" "science.plt" 2 0)))

histogram-2d?

Function: (histogram-2d? x)

Contract: (-> any? boolean?)

This function returns true, #t, if x is a 2D histogram and false, #f otherwise.

CHAPTER 9. HISTOGRAMS 113

9.2.1 Creating 2D Histograms

make-histogram-2d

Function: (make-histogram-2d nx ny)

Contract: (-> (integer-in 1 +inf.0) (integer-in 1 +inf.0) histogram-2d?)

This function returns a new, empty 2D histogram with nx bins in the x direction and
ny bins in the y direction and nx+1 range entries in the x direction and ny +1 range
entries in the y direction. The range entries must be set with a subsequent call to
set-histogram-2d-ranges! or set-histogram-2d-ranges-uniform!.

make-histogram-2d-with-ranges-uniform

Function: (make-histogram-2d-with-ranges-uniform

nx ny x-min x-max y-min y-max)

Contract: (->r ((nx (integer-in 1 +inf.0))

(ny (integer-in 1 +inf.0))

(x-min real?)

(x-max (>/c x-min))

(y-min real?)

(y-max (>/c y-min)))

histogram-2d?)

This function returns a new, empty 2D histogram with nx bins in the x direction and
ny bins in the y direction. The nx + 1 range entries in the x direction are initialized
to provide nx uniform width bins from x-min to x-max. The ny + 1 range entries in
the y direction are initialized to provide ny uniform width bins from y-min to y-max.

9.2.2 Updating and Accessing 2D Histogram Elements

histogram-2d-nx

Function: (histogram-2d-nx h)

Contract: (-> histogram-2d? (integer-in 1 +inf.0))

This function returns the number of bins in the x direction in the 2D histogram h.

histogram-2d-ny

Function: (histogram-2d-ny h)

Contract: (-> histogram-2d? (integer-in 1 +inf.0))

This function returns the number of bins in the y direction in the 2D histogram h.

histogram-2d-x-ranges

Function: (histogram-2d-x-ranges h)

Contract: (-> histogram-2d? (vectorof real?))

This function returns the vector of ranges in the x direction for the 2D histogram h.
The length of the vector is equal to the number of bins in the x direction in h plus
one.

CHAPTER 9. HISTOGRAMS 114

histogram-2d-y-ranges

Function: (histogram-2d-y-ranges h)

Contract: (-> histogram-2d? (vectorof real?))

This function returns the vector of ranges in the y direction for the 2D histogram h.
The length of the vector is equal to the number of bins in the y direction in h plus
one.

set-histogram-2d-ranges!

Function: (set-histogram-2d-ranges! h x-ranges y-ranges)

Contract: (-> histogram-2d? (vectorof real?) (vectorof real?) void?)

This function sets the ranges for the 2D histogram h according to the given x-ranges
and y-ranges. The length of the x-ranges vector must be equal to the number of bins
in the x direction in h plus one. The length of the y-ranges vector must be equal to
the number of bins in the y direction in h plus one. The bins in h are also reset.

set-histogram-2d-ranges-uniform!

Function: (set-histogram-2d-ranges-uniform! h x-min x-max y-min y-max)

Contract: (->r ((h histogram-2d?)

(x-min real?)

(x-max (>/c x-min))

(y-min real?)

(y-max (>/c y-max)))

void?)

This function sets the ranges for the 2D histogram h uniformly from x-min to x-max
in the x direction and uniformly from y-min to y-max in the y direction. The bins in
h are also reset.

histogram-2d-bins

Function: (histogram-bins h)

Contract: (-> histogram-2d? (vectorof real?))

This functions returns the vector of bins for the 2D histogram h. The length of the
vector is nx ∗ ny. The (i, j)th index is computed as (i ∗ ny) + j.

histogram-2d-increment!

Function: (histogram-increment! h x y)

Contract: (-> histogram-2d? real? real? void?)

This function increments the bin in the 2D histogram h containing (x, y). The bin
value is incremented by one.

CHAPTER 9. HISTOGRAMS 115

histogram-2d-accumulate!

Function: (histogram-2daccumulate! h x y weight)

Contract: (-> histogram-2d? real? real? (>-/c 0.0) void?)

This function increments the bin in the 2D histogram h containing (x, y) by the
specified weight.

histogram-2d-get

Function: (histogram-2d-get h i j)

Contract: (-> histogram-2d? natural-number? natural-number? (>=/c 0.0))

This functions returns the contents of the (i, j)th bin of the 2D histogram h.

histogram-2d-get-x-range

Function: (histogram-2d-get-x-range h i j)

Contract: (-> histogram-2d? natural-number? natural-number?

(values real? real?))

This function returns the upper and lower range limits in the x direction for the (i, j)th

bin of the 2D histogram h. The upper and lower range limits are returned as multiple
values.

histogram-2d-get-y-range

Function: (histogram-2d-get-y-range h i j)

Contract: (-> histogram-2d? natural-number? natural-number?

(values real? real?))

This function returns the upper and lower range limits in the y direction for the (i, j)th

bin of the 2D histogram h. The upper and lower range limits are returned as multiple
values.

9.2.3 2D Histogram Statistics

histogram-2d-max

Function: (histogram-2d-max h)

Contract: (-> histogram-2d? (>=/c 0.0))

This function returns the maximum bin value in the 2D histogram h. Since in this
implementation bin values are non-negative, the maximum value is also non-negative.

histogram-2d-min

Function: (histogram-2d-min h)

Contract: (-> histogram-2d? (>=/c 0.0))

This function returns the minimum bin value in the 2D histogram h. Since in this
implementation bin values are non-negative, the minimum value is also non-negative.

CHAPTER 9. HISTOGRAMS 116

histogram-2d-sum

Function: (histogram-2d-sum h)

Contract: (-> histogram-2d? (>=/c 0.0))

This function returns the sum of the data in the 2D histogram h.

histogram-2d-x-mean

Function: (histogram-2d-x-mean h)

Contract: (-> histogram-2d? (>=/c 0.0))

This function returns the mean in the x direction of the data in the 2D histogram h.

histogram-2d-y-mean

Function: (histogram-2d-y-mean h)

Contract: (-> histogram-2d? (>=/c 0.0))

This function returns the mean in the y direction of the data in the 2D histogram h.

histogram-2d-x-sigma

Function: (histogram-2d-x-sigma h)

Contract: (-> histogram-2d? (>=/c 0.0))

This function returns the standard deviation in the x direction of the data in the 2D
histogram h.

histogram-2d-y-sigma

Function: (histogram-2d-y-sigma h)

Contract: (-> histogram-2d? (>=/c 0.0))

This function returns the standard deviation in the y direction of the data in the 2D
histogram h.

histogram-2d-covariance

Function: (histogram-2d-covariance h)

Contract: (-> histogram-2d? (>=/c 0.0))

This function returns the covariance of the data in the 2D histogram h.

9.2.4 2D Histogram Graphics

The 2D histogram graphics functions are defined in the file histogram-2d-graphics.ss
in the science collection and are made available using the following form:

(require (planet "histogram-2d-graphics.ss"

("williams" "science.plt" 2 0)))

CHAPTER 9. HISTOGRAMS 117

histogram-2d-plot

Function: (histogram-2d-plot h title)

Function: (histogram-2d-plot h)

Contract: (case->

(-> histogram-2d? string? any)

(-> histogram-2d? any))

This function returns a plot of the 2D histogram h with the specified title. If title
is not specified, "Histogram" is used. The plot is scaled to the maximum bin value.
The plot is produced by the 2D histogram plotting extension to the plot collection
provided with PLT Scheme (PLoT Scheme).

9.2.5 Example

Example: Plot of 2D histogram of random variates from the bivariate Gaussian dis-
tribution standard deviations 1.0 and 1.0 in the x and y directions and correlation
coefficient 0.0.

(require (planet "bivariate-gaussian.ss" ("williams" "science.plt" 2 0)

"random-distributions"))

(require (planet "histogram-2d-with-graphics.ss"

("williams" "science.plt" 2 0)))

(let ((h (make-histogram-2d-with-ranges-uniform

20 20 -3.0 3.0 -3.0 3.0)))

(do ((i 0 (+ i 1)))

((= i 10000) (void))

(let-values (((x y) (random-bivariate-gaussian 1.0 1.0 0.0)))

(histogram-2d-increment! h x y)))

(histogram-2d-plot h "Histogram of Bivariate Gaussian Distribution"))

Figure 9.3 shows the resulting 2D histogram.

9.3 Discrete Histograms

The discrete histogram functions described in this section are defined in the discrete-
histogram.ss file in the science collection and are made available using the following
form:

(require (planet "discrete-histogram.ss" ("williams" "science.plt" 2 0)))

discrete-histogram?

Function: (discrete-histogram? x)

Contract: (-> any? boolean?)

This function returns true, #t, if x is a discrete histogram and false, #f otherwise.

CHAPTER 9. HISTOGRAMS 118

Figure 9.3: Histogram of Random Variates from Bivariate Gaussian (1.0, 1.0,
0.0)

CHAPTER 9. HISTOGRAMS 119

9.3.1 Creating Discrete Histograms

make-discrete-histogram

Function: (make-discrete-histogram n1 n2 dynamic?)

Function: (make-discrete-histogram n1 n2)

Function: (make-discrete-histogram)

Contract: (case-> (->r ((n1 integer?)

(n2 (and/c integer? (>=/c n1)))

(dynamic? boolean?))

discrete-histogram?)

(->r ((n1 integer?)

(n2 (and/c integer? (>=/c n1))))

discrete-histogram?)

(->r discrete-histogram?)))

This function returns a new, empty discrete histogram with range n1 to n2. If dy-
manic? is #t or make-discrete-histogram is called with no arguments, the resulting
discrete histogram will grow dynamically to accomodate subsequent data points.

9.3.2 Updating and Accessing Discrete Histogram Ele-
ments

discrete-histogram-n1

Function: (discrete-histogram-n1 h)

Contract: (-> discrete-histogram? integer?)

This function returns the lower range of the discrete histogram h.

discrete-histogram-n2

Function: (discrete-histogram-n2 h)

Contract: (-> discrete-histogram? integer?)

This function returns the upper range of the discrete histogram h.

discrete-histogram-dynamic?

Function: (discrete-histogram-dynamic? h)

Contract: (-> discrete-histogram? boolean?)

This function returns #t if the discrete histogram h is dynamic and #f otherwise.

discrete-histogram-bins

Function: (discrete-histogram-bins h)

Contract: (-> discrete-histogram? (vectorof real?))

This functions returns the vector of bins for the discrete histogram h.

CHAPTER 9. HISTOGRAMS 120

discrete-histogram-increment!

Function: (discrete-histogram-increment! h i)

Contract: (-> discrete-histogram? integer? void?)

This function increments the bin in the discrete histogram h containing i. The bin
value is incremented by one.

discrete-histogram-accumulate!

Function: (discrete-histogram-accumulate! h i weight)

Contract: (-> discrete-histogram? integer? (>-/c 0.0) void?)

This function increments the bin in the discrete histogram h containing i by the
specified weight.

discrete-histogram-get

Function: (discrete-histogram-get h i)

Contract: (-> discrete-histogram? integer? (>=/c 0.0))

This functions returns the contents of the bin of the discrete histogram h containing
i.

9.3.3 Discrete Histogram Statistics

discrete-histogram-max

Function: (discrete-histogram-max h)

Contract: (-> discrete-histogram? (>=/c 0.0))

This function returns the maximum bin value in the discrete histogram h. Since in this
implementation bin values are non-negative, the maximum value is also non-negative.

discrete-histogram-min

Function: (discrete-histogram-min h)

Contract: (-> discrete-histogram? (>=/c 0.0))

This function returns the minimum bin value in the discrete histogram h. Since in this
implementation bin values are non-negative, the minimum value is also non-negative.

discrete-histogram-sum

Function: (discrete-histogram-sum h)

Contract: (-> discrete-histogram? (>=/c 0.0))

This function returns the sum of the data in the discrete histogram h.

CHAPTER 9. HISTOGRAMS 121

9.3.4 Discrete Histogram Graphics

The discrete histogram graphics functions are defined in the file discrete-histogram-
graphics.ss in the science collection and are made available using the following form:

(require (planet "discrete-histogram-graphics.ss"

("williams" "science.plt" 2 0)))

discrete-histogram-plot

Function: (discrete-histogram-plot h title)

Function: (discrete-histogram-plot h)

Contract: (case->

(-> discrete-histogram? string? any)

(-> discrete-histogram? any))

This function returns a plot of the discrete histogram h with the specified title. If
title is not specified, "Histogram" is used. The plot is scaled to the maximum bin
value. The plot is produced by the discrete histogram plotting extension to the plot
collection provided with PLT Scheme (PLoT Scheme).

discrete-histogram-plot-scaled

Function: (discrete-histogram-plot-scaled h title)

Function: (discrete-histogram-plot-scaled h)

Contract: (case->

(-> discrete-histogram? string? any)

(-> discrete-histogram? any))

This function returns a plot of the discrete histogram h with the specified title. If title
is not specified, "Histogram" is used. The plot is scaled to the sum of the bin values.
It is most useful for a small number of bin - generally, ten or less. The plot is produced
by the discrete histogram plotting extension to the plot collection provided with PLT
Scheme (PLoT Scheme).

9.3.5 Examples

Example: Plot of discrete histogram of random variates from the Poisson distribution
with mean 10.0.

(require (planet "poisson.ss" ("williams" "science.plt" 2 0)

"random-distributions"))

(require (planet "discrete-histogram-with-graphics.ss"

("williams" "science.plt" 2 0)))

(let ((h (make-discrete-histogram)))

(do ((i 0 (+ i 1)))

((= i 10000) (void))

(discrete-histogram-increment! h (random-poisson 10.0)))

(discrete-histogram-plot h "Histogram of Poisson Distribution"))

CHAPTER 9. HISTOGRAMS 122

Figure 9.4: Histogram of Random Variates from Poisson (10.0)

Figure 9.4 shows the resulting histogram.
Example: Scaled plot of discrete histogram of random variates from the logarithmic

distribution with probability 0.5.

(require (planet "logarithmic.ss" ("williams" "science.plt" 2 0)

"random-distributions"))

(require (planet "discrete-histogram-with-graphics.ss"

("williams" "science.plt" 2 0)))

(let ((h (make-discrete-histogram)))

(do ((i 0 (+ i 1)))

((= i 10000) (void))

(discrete-histogram-increment! h (random-logarithmic 0.5)))

(discrete-histogram-plot-scaled

h "Histogram of Logarithmic Distribution"))

Figure 9.5 shows the resulting histogram.

CHAPTER 9. HISTOGRAMS 123

Figure 9.5: Histogram of Random Variates from Logarithmic (0.5)

Chapter 10

Ordinary Differential
Equations

This chapter describes funtions for solving ordinary differential equation (ODE) initial
value problems. The PLT Scheme Science Collection provides a variety of low-level
methods, such as Runge-Kutta and Bulirsch-Stoer routines, and higher-level compo-
nents for adaptive step-size control. The components can be combined by the user
to achieve the desired solution, with full access to any intermediate steps. The func-
tions described in this chapter are defined in the ode-initval.ss file in the science
collection and are made available using the form:

(require (planet "ode-initval.ss" ("williams" "science.plt" 2 0)))

10.1 Defining the ODE System

The routines solve the general n-dimensional first-order system,

dyi(t)/dt = fi(t, yi(t), ..., yn(t))

for i = 1, . . . , n. The stepping functions rely on the vector of derivatives fi and the
Jacobian matrix, Jij = dfi(t, y(t))/dyj. A system of equations is defined using the
ode-system structure.

ode-system

Structure: ode-system

This structure defines a general ODE system with arbitrary parameters.

function – A function (lambda (t y dydt params) ...). This function should
store the elements of fi(t, y, params) in the vector dydt, for arguments (t, y)
and parameters params.

jacobian – A function (lambda (t y dfdy dfdt params) This function
should store the elements dfi(t, y, params)/dt in the vector dfdt and the

124

CHAPTER 10. ORDINARY DIFFERENTIAL EQUATIONS 125

Jacobian matrix Jij in the vector dfdy as a row-ordered matrix J(i,j) =

dfdy(i * dimension + j) where dimension is the dimension of the system.
Some of the simplier solver algorithms do not make use of the Jacobian
matrix, so it is not always strictly necessary to provide it (the jacobian field
of the structure can be replace by #f for those algorithms). However, it is
useful to provide the Jacobian to allow the solver algorithms to be
interchanged. The best algorithms make use of the Jacobian.

dimension – This is the dimension of the system of equations.

params – This is a list of the arbitrary parameters of the system.

10.2 Stepping Functions

The lowest level components are the stepping functions that advance a solution from
time t to t + h for a fixed step size h and estimate the resulting local error.

make-ode-step

Function: (make-ode-step step-type dim)

Contract: (-> ode-step-type? natural? ode-step?)

This function returns a newly created instance of a stepping function of type step-type
for a system of dim dimensions.

ode-step-reset

Function: (ode-step-reset step)

Contract: (-> ode-step? void)

This function resets the stepping function step. It should be used whenever the next
use of step will not be a continuation of a previous step.

ode-step-name

Function: (ode-step-name step)

Contract: (-> ode-step? string?)

This function returns the name of the stepping function step as a string.

ode-step-order

Function: (ode-step-order step)

Contract: (-> ode-step? natural?)

This function returns the order of the stepping function step on the previous step.
This order can vary if the stepping function itself is adaptive.

CHAPTER 10. ORDINARY DIFFERENTIAL EQUATIONS 126

ode-step-apply

Function:
(ode-step-apply step t h y y-err dydt-in dydt-out dydt)

Contract:
(-> ode-step? real? real?

(vector-of real?) (vector-of real?)

(vector-of real?) (vector-of real?)

ode-system? void)

This function applies the stepping function step to the system of equations defined
by dydt, using the step size h to advance the system from time t and state y to time
t + h. The new state of the system is stored in y on output, with an estimate of the
absolute error in each component stored in y-err. If the argument dydt-in is not #f, it
should be a vector containing the derivatives for the system at time t on input. This
is optional as the derivatives will be computed internally if they are not provided, but
allows the reuse of existing derivative information. On output the new derivatives of
the system at time t + h will be stored in the vector dydt-out, if it is not #f.

The following stepping algorithms are available.

Step Type: ode-step-rk2

Embedded Runge-Kutta (2,3) method.

Step Type: ode-step-rk4

4th order (classical) Runge-Kutta.

Step Type: ode-step-rkf45

Embedded Runge-Kutta-Fehlberg (4,5) method. This method is a good general-
purpose integrator.

10.3 Adaptive Step-Size Control

The control function examines the proposed change to the solution and its error esti-
mate produced by a stepping function and attempts to determine the optimal step-size
for a user-specified level of error.

ode-control-standard-new

Function: (ode-control-standard-new eps-abs eps-rel a-y a-dydt)

Contract: (-> real? real? real? real?)

The standard control object is a four parameter heuristic based on absolute and relative
errors eps-abs and eps-rel, and scaling factors a-y and a-dydt for the system stste y(t)
and derivatives y’(t), respectively.

The step size adjustment procedure for this method begins by computing the
desired error level Di for each component,

Di = epsabs + epsrel ∗ (ay|yi| + adydth|y′
i|)

CHAPTER 10. ORDINARY DIFFERENTIAL EQUATIONS 127

and comparing it with the observed error Ei = |yerri|. If the observed error E exceeds
the desired error level D by more than 10

hnew = hold ∗ S ∗ (E/D)−1/q)

where q is the consistency order of the method (e.g. q=4 for 4(5) embedded RK), and
S is a safety factor of 0.9. The ratio E/D is taken to be the maximum of the ratios
Ei/Di.

If the observed error E is less than 50% of the desired level D for the maximum
ratio Ei/DI , then the algorithm takes the opportunity to increase the step size to
bring the error in line with the desired level,

hnew = hold ∗ S ∗ (E/D)(−1/(q+1))

This encompasses all the standard scaling methods. To avoid uncontrolled changes
in the step size, the overall scaling factor is limited to the range 1/5 to 5.

ode-control-y-new

Function: (ode-control-y-new eps-abs eps-rel)

Contract: (-> real? real?)

This function creates a new control object that will keep the local error within an
absolute error of eps-abs and relative error eps-rel with respect to the solution yi(t).
This is equivalent to the standard control object with a-y = 1 and a-dydt = 0.

ode-control-yp-new

Function: (ode-control-yp-new eps-abs eps-rel)

Contract: (-> real? real?)

This function creates a new control object that will keep the local error within an
absolute error of eps-abs and relative error eps-rel with respect to the derivatives of
the solution y′

i(t). This is equivalent to the standard control object with a-y = 0 and
a-dydt = 1.

ode-control-scaled-new

Function: (ode-control-scaled-new eps-abs eps-rel a-y a-dydt

scale-abs dim)

Contract: (-> real? real? real? real? (vector-of real?) natural?)

This function creates a new control object that uses the same algorithm as ode-control-
standard-new, but with an absolute error that is scaled for each component by the
array scale-abs. The formula for Di for this control object is,

Di = epsabs ∗ si + epsrel ∗ (ay|yi| + adydth|y′
i|)

where si is the ith component of the array scale-abs. The same error control
heuristic is used by the Matlab ODE suite.

CHAPTER 10. ORDINARY DIFFERENTIAL EQUATIONS 128

ode-control

Function: (make-ode-control control-type)

Contract: (-> ode-control-type? ode-control?)

This function returns a new instance of a control function of type control-type. This
function is only needed for defining new types of control functions. For most purposes,
the standard control functions described above should be sufficient.

ode-control-init

Function: (ode-control-init control eps-abs eps-rel a-y a-dydt)

Contract: (-> ode-control? real? real? real? real? any)

This function initializes the control function control with the parameters eps-abs (ab-
solute error), eps-rel (relative error), a-y (scaling factor for y), and a-dydt scaling
factor for derivatives.

ode-control-h-adjust

Function: (ode-control-h-adjust control step y y-err dydt h)

Contract: (-> ode-control? ode-step

(vectorof real?) (vectorof real?)

(vectorof real?) box? any)

This function adjusts the step size h using the control function control and the current
values of y, y-err, and dydt. The stepping function step is also needed to determine the
order of the method. If the error in the y valyes y-err is found to be too large, then
the step-size h is reduced and the function returns −1. If the error is sufficiently small,
then h may be increased and 1 is returned. The function returns 0 if the step-size is
unchanged. The goal of the function is to estimate the largest step-size that satisfies
the user-specified accuracy requirement for the current point.

ode-control-name

Function: (ode-control-name control)

Contract: (-> ode-control? string?)

This function returns a pointer to the name of the control function. For eaxmple,

(printf ("control method is ’~a’~n"

(ode-control-name control)))

would print something like control mathod is ’standard’.

10.4 Evolution

The highest-level of the system is the evolution function that combines the results of a
stepping function and control function to reliably advance the solution forward over an
interval (t0, t1). If the control function signals that the step size should be descreased,
the evolution function backs out of the current step and tries the proposed smaller
step size. This process is continued until an acceptable step size is found.

CHAPTER 10. ORDINARY DIFFERENTIAL EQUATIONS 129

make-ode-evolve

Function: (make-ode-evolve dim)

Contract: (-> positive? ode-evolve?)

This function returns a new instance of an evolution function for a system of dim
dimensions.

ode-evolve-apply

Function: (ode-evolve-apply evolve control step system

t t1 h y)

Contract: (-> ode-evolve? ode-control? ode-step? ode-system?

box? real? box? (vectorof real?) any)

This function evolves the system from time t and position y using the stepping function
step. The new time and position are stored in t and y on output. The initial step size
is taken as h, but this may be modified using the control function control to achieve the
appropriate bound, if necessary. The routine may make several calls to step in order
to determine the optimum step size. If the step size has been changed, the value of h
will be modified on output. The maximum time t1 is guaranteed not to be exceeded
by the time step. On the final time step, the value of t will be set to t1 exactly.

ode-evolve-reset

Function: (ode-evolve-reset evolve)

Contract: (-> ode-evolve? any)

This function resets the evolution function evolve. It should be used used whenever
the next use of evolve will not be a continuation of a previous step.

10.5 Examples

Example: The following programs solve the second-order nonlinear Van der Pol oscil-
lator equation,

x”(t) + µx′(t)(x(t)2 − 1) + x(t) = 0

This can be converted into a first order system suitable for use with the routines
described in this chapter by introducing a separate variable for the velocity, y = x’(t),

x′ = y

y′ = −x + µy(1 − x2)

The following example integrates the above system of equations from t = 0.0to100.0
in increments of 0.01 using a 4th order Runge-Kutta stepping function.

(require (planet "ode-initval.ss" ("williams" "science.plt" 2 0)))

(require (lib "plot.ss" "plot"))

(define (func t y f params)

(let ((mu (car params))

CHAPTER 10. ORDINARY DIFFERENTIAL EQUATIONS 130

(y0 (vector-ref y 0))

(y1 (vector-ref y 1)))

(vector-set! f 0 y1)

(vector-set! f 1 (- (- y0) (* mu y1 (- (* y0 y0) 1.0))))))

(define (main)

(let* ((type rk4-ode-type)

(step (make-ode-step type 2))

(mu 10.0)

(system (make-ode-system func #f 2 (list mu)))

(t 0.0)

(t1 100.0)

(h 1.0e-2)

(y #(1.0 0.0))

(y-err (make-vector 2))

(dydt-in (make-vector 2))

(dydt-out (make-vector 2))

(y0-values ’())

(y1-values ’()))

(ode-system-function-eval system t y dydt-in)

(let loop ()

(if (< t t1)

(begin

(ode-step-apply step t h

y y-err

dydt-in

dydt-out

system)

;(printf "~a ~a ~a~n" t (vector-ref y 0) (vector-ref y 1))

(set! y0-values

(cons (vector t (vector-ref y 0)) y0-values))

(set! y1-values

(cons (vector t (vector-ref y 1)) y1-values))

(vector-set! dydt-in 0 (vector-ref dydt-out 0))

(vector-set! dydt-in 1 (vector-ref dydt-out 1))

(set! t (+ t h))

(loop))))

(printf "~a~n" (plot (points (reverse y0-values))

(x-min 0.0)

(x-max 100.0)

(y-min -2.0)

(y-max 2.0)))

(printf "~a~n" (plot (points (reverse y1-values))

(x-min 0.0)

(x-max 100.0)))))

Figures 10.1 and 10.2 show the resulting output plots of y0 and y1.
Example: The following example evolves the above system of equations from t =

0.0to100.0 maintaining an error in the y value of 1.0e-6 using a 4th order Runge-Kutta
stepping function.

CHAPTER 10. ORDINARY DIFFERENTIAL EQUATIONS 131

Figure 10.1: ODE Example 1 Plot of y0

(require (planet "ode-initval.ss" ("williams" "science.plt" 2 0)))

(require (lib "plot.ss" "plot"))

(define (func t y f params)

(let ((mu (car params))

(y0 (vector-ref y 0))

(y1 (vector-ref y 1)))

(vector-set! f 0 y1)

(vector-set! f 1 (- (- y0) (* mu y1 (- (* y0 y0) 1.0))))))

(define (main)

(let* ((type rk4-ode-type)

(step (make-ode-step type 2))

(control (control-y-new 1.0e-6 0.0))

(evolve (make-ode-evolve 2))

(mu 10.0)

(system (make-ode-system func #f 2 (list mu)))

(t (box 0.0))

(t1 100.0)

(h (box 1.0e-6))

(y #(1.0 0.0))

(y0-values ’())

CHAPTER 10. ORDINARY DIFFERENTIAL EQUATIONS 132

Figure 10.2: ODE Example 1 Plot of y1

(y1-values ’()))

(let loop ()

(if (< (unbox t) t1)

(begin

(ode-evolve-apply

evolve control step system

t t1 h y)

;(printf "~a ~a ~a~n"

; (unbox t) (vector-ref y 0) (vector-ref y 1))

(set! y0-values

(cons (vector (unbox t) (vector-ref y 0)) y0-values))

(set! y1-values

(cons (vector (unbox t) (vector-ref y 1)) y1-values))

(loop))))

(printf "Number of iterations = ~a~n"

(ode-evolve-count evolve))

(printf "Number of failed steps = ~a~n"

(ode-evolve-failed-steps evolve))

(printf "~a~n" (plot (points (reverse y0-values))

(x-min 0.0)

(x-max 100.0)

(y-min -2.0)

(y-max 2.0)))

CHAPTER 10. ORDINARY DIFFERENTIAL EQUATIONS 133

(printf "~a~n" (plot (points (reverse y1-values))

(x-min 0.0)

(x-max 100.0)))))

When run, it prints the following:

Number of iterations = 84575

Number of failed steps = 352

Figures 10.3 and 10.4 show the resulting output plots of y0 and y1.

Figure 10.3: ODE Example 2 Plot of y0

CHAPTER 10. ORDINARY DIFFERENTIAL EQUATIONS 134

Figure 10.4: ODE Example 2 Plot of y1

Chapter 11

Chebyshev Approximations

This chapter describes the routines for computing Chebyshev approximations to uni-
variate functions provided by the PLT Scheme Science Collection. A Chebyshev ap-
proximation is a trucvation of the series

f(x) =
∑

cnTn(x)

where the Chebyshev polymonials Tn(x) = cos(n arccos x) provides an orthogonal basis
of polynomials in the interval [−1, 1] with the weight function 1/

√
1 − x2. The first

few Chebyshev ploymonials are, T0(x) = 1, T1(x) = x, T2(x) = 2x2 − 1. For more
information see Abramowitz and Stegan, Chapter 22.

The functions described in this chapter are defined in the chebyshev.ss file in the
science collection and are made available using the form:

(require (planet "chebyshev.ss" ("williams" "science.plt" 2 0)))

11.1 The chebyshev-series Structure

chebyshev-series

Structure: chebyshev-series

Contract: (struct chebyshev-series

((coefficient (vectorof real?))

(order natural-number?)

(lower real?)

(upper real?)))

This structure defines a Chebyshev Series.

coefficients – a vector of length order containing the coefficients for the
Chebyshev series.

order – The order of the Chebyshev series.

lower – The lower bound on the interval over which the Chebyshev series is defined.

upper – The upper bound on the interval over which the Chebyshev series is defined.

135

CHAPTER 11. CHEBYSHEV APPROXIMATIONS 136

The approximations are made over the range [lower, upper] using order +1 terms,
including coefficient [0]. The series is computed using the following convention,

f(x) = (c0/2) +
∑
n=1

cnTn(x)

which is needed when accessing the coefficients directly.

11.2 Creation and Calculation of Chebyshev Se-
ries

make-chebyshev-series-order

Function: (make-chebyshev-series-order order)

Contract: (-> natural-number? chebyshev-series?)

This function returns a newly created Chebyshev series with the given order.

chebyshev-series-init

Function: (chebyshev-series-init cs func a b)

Contract: (-> chebyshev-series? procedure? real? real? void?)

This function computes the Chebyshev approximation cs for the function func over
the range (a, b) to the previously specified order. The computation of the Chebyshev
approximation is an O(n2) process and requires n function evaluations.

11.3 Chebyshev Series Evaluation

chebyshev-eval

Function: (chebyshev-eval cs x)

Contract: (-> chebyshev-series? real? real?)

This function evaluates the Chebyshev series cs at the given point x.

chebyshev-eval-n

Function: (chebyshev-eval-n cs n x)

Contract: (-> chebyshev-series? natural-number? real? real?)

This function evaluates the Chebyshev series cs at the given point x to (at most) the
given order n.

11.4 Examples

Example: The following program computes Chebyshev approximations to a step func-
tion. This is an extremely difficult approximation to make, due to the discontinuity,
and was chosed as an example where approximation error is visible. For smooth func-
tions the Chebyshev approximation converges extremely rapidly and errors would not
be visible.

CHAPTER 11. CHEBYSHEV APPROXIMATIONS 137

(require (planet "chebyshev.ss" ("williams" "science.plt" 2 0)))

(require (lib "plot.ss" "plot"))

(define (f x)

(if (< x 0.5) .25 .75))

(define (chebyshev-example n)

(let ((cs (make-chebyshev-series-order 40))

(y-values ’())

(y-cs-10-values ’())

(y-cs-40-values ’()))

(chebyshev-series-init cs f 0.0 1.0)

(do ((i 0 (+ i 1)))

((= i n) (void))

(let* ((x (exact->inexact (/ i n)))

(y (f x))

(y-cs-10 (chebyshev-eval-n cs 10 x))

(y-cs-40 (chebyshev-eval cs x)))

;(printf "~a ~a ~a ~a\n"

; x y y-cs-10 y-cs-40)

(set! y-values (cons (vector x y) y-values))

(set! y-cs-10-values

(cons (vector x y-cs-10) y-cs-10-values))

(set! y-cs-40-values

(cons (vector x y-cs-40) y-cs-40-values))))

(printf "~a~n" (plot (mix (points (reverse y-values))

(points (reverse y-cs-10-values)))

(x-min 0) (x-max 1)

(y-min 0) (y-max 1)

(title "Chebyshev Series Order 10")))

(printf "~a~n" (plot (mix (points (reverse y-values))

(points (reverse y-cs-40-values)))

(x-min 0) (x-max 1)

(y-min 0) (y-max 1)

(title "Chebyshev Series Order 40")))))

(chebyshev-example 100)

Figures 11.1 and 11.2 show the resulting output plots.

CHAPTER 11. CHEBYSHEV APPROXIMATIONS 138

Figure 11.1: Chebyshev Series Order 10

CHAPTER 11. CHEBYSHEV APPROXIMATIONS 139

Figure 11.2: Chebyshev Series Order 40

Appendix A

GNU Lesser General Public
License (LGPL)

GNU LESSER GENERAL PUBLIC LICENSE

Version 2.1, February 1999

Copyright (C) 1991, 1999 Free Software Foundation, Inc.

59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies

of this license document, but changing it is not allowed.

[This is the first released version of the Lesser GPL. It also counts

as the successor of the GNU Library Public License, version 2, hence

the version number 2.1.]

Preamble

The licenses for most software are designed to take away your

freedom to share and change it. By contrast, the GNU General Public

Licenses are intended to guarantee your freedom to share and change

free software--to make sure the software is free for all its users.

This license, the Lesser General Public License, applies to some

specially designated software packages--typically libraries--of the

Free Software Foundation and other authors who decide to use it. You

can use it too, but we suggest you first think carefully about whether

this license or the ordinary General Public License is the better

strategy to use in any particular case, based on the explanations below.

When we speak of free software, we are referring to freedom of use,

not price. Our General Public Licenses are designed to make sure that

you have the freedom to distribute copies of free software (and charge

for this service if you wish); that you receive source code or can get

it if you want it; that you can change the software and use pieces of

140

APPENDIX A. GNU LESSER GENERAL PUBLIC LICENSE (LGPL) 141

it in new free programs; and that you are informed that you can do

these things.

To protect your rights, we need to make restrictions that forbid

distributors to deny you these rights or to ask you to surrender these

rights. These restrictions translate to certain responsibilities for

you if you distribute copies of the library or if you modify it.

For example, if you distribute copies of the library, whether gratis

or for a fee, you must give the recipients all the rights that we gave

you. You must make sure that they, too, receive or can get the source

code. If you link other code with the library, you must provide

complete object files to the recipients, so that they can relink them

with the library after making changes to the library and recompiling

it. And you must show them these terms so they know their rights.

We protect your rights with a two-step method: (1) we copyright the

library, and (2) we offer you this license, which gives you legal

permission to copy, distribute and/or modify the library.

To protect each distributor, we want to make it very clear that

there is no warranty for the free library. Also, if the library is

modified by someone else and passed on, the recipients should know

that what they have is not the original version, so that the original

author’s reputation will not be affected by problems that might be

introduced by others.

Finally, software patents pose a constant threat to the existence of

any free program. We wish to make sure that a company cannot

effectively restrict the users of a free program by obtaining a

restrictive license from a patent holder. Therefore, we insist that

any patent license obtained for a version of the library must be

consistent with the full freedom of use specified in this license.

Most GNU software, including some libraries, is covered by the

ordinary GNU General Public License. This license, the GNU Lesser

General Public License, applies to certain designated libraries, and

is quite different from the ordinary General Public License. We use

this license for certain libraries in order to permit linking those

libraries into non-free programs.

When a program is linked with a library, whether statically or using

a shared library, the combination of the two is legally speaking a

combined work, a derivative of the original library. The ordinary

General Public License therefore permits such linking only if the

entire combination fits its criteria of freedom. The Lesser General

Public License permits more lax criteria for linking other code with

the library.

We call this license the "Lesser" General Public License because it

APPENDIX A. GNU LESSER GENERAL PUBLIC LICENSE (LGPL) 142

does Less to protect the user’s freedom than the ordinary General

Public License. It also provides other free software developers Less

of an advantage over competing non-free programs. These disadvantages

are the reason we use the ordinary General Public License for many

libraries. However, the Lesser license provides advantages in certain

special circumstances.

For example, on rare occasions, there may be a special need to

encourage the widest possible use of a certain library, so that it becomes

a de-facto standard. To achieve this, non-free programs must be

allowed to use the library. A more frequent case is that a free

library does the same job as widely used non-free libraries. In this

case, there is little to gain by limiting the free library to free

software only, so we use the Lesser General Public License.

In other cases, permission to use a particular library in non-free

programs enables a greater number of people to use a large body of

free software. For example, permission to use the GNU C Library in

non-free programs enables many more people to use the whole GNU

operating system, as well as its variant, the GNU/Linux operating

system.

Although the Lesser General Public License is Less protective of the

users’ freedom, it does ensure that the user of a program that is

linked with the Library has the freedom and the wherewithal to run

that program using a modified version of the Library.

The precise terms and conditions for copying, distribution and

modification follow. Pay close attention to the difference between a

"work based on the library" and a "work that uses the library". The

former contains code derived from the library, whereas the latter must

be combined with the library in order to run.

GNU LESSER GENERAL PUBLIC LICENSE

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License Agreement applies to any software library or other

program which contains a notice placed by the copyright holder or

other authorized party saying it may be distributed under the terms of

this Lesser General Public License (also called "this License").

Each licensee is addressed as "you".

A "library" means a collection of software functions and/or data

prepared so as to be conveniently linked with application programs

(which use some of those functions and data) to form executables.

The "Library", below, refers to any such software library or work

which has been distributed under these terms. A "work based on the

Library" means either the Library or any derivative work under

copyright law: that is to say, a work containing the Library or a

APPENDIX A. GNU LESSER GENERAL PUBLIC LICENSE (LGPL) 143

portion of it, either verbatim or with modifications and/or translated

straightforwardly into another language. (Hereinafter, translation is

included without limitation in the term "modification".)

"Source code" for a work means the preferred form of the work for

making modifications to it. For a library, complete source code means

all the source code for all modules it contains, plus any associated

interface definition files, plus the scripts used to control compilation

and installation of the library.

Activities other than copying, distribution and modification are not

covered by this License; they are outside its scope. The act of

running a program using the Library is not restricted, and output from

such a program is covered only if its contents constitute a work based

on the Library (independent of the use of the Library in a tool for

writing it). Whether that is true depends on what the Library does

and what the program that uses the Library does.

1. You may copy and distribute verbatim copies of the Library’s

complete source code as you receive it, in any medium, provided that

you conspicuously and appropriately publish on each copy an

appropriate copyright notice and disclaimer of warranty; keep intact

all the notices that refer to this License and to the absence of any

warranty; and distribute a copy of this License along with the

Library.

You may charge a fee for the physical act of transferring a copy,

and you may at your option offer warranty protection in exchange for a

fee.

2. You may modify your copy or copies of the Library or any portion

of it, thus forming a work based on the Library, and copy and

distribute such modifications or work under the terms of Section 1

above, provided that you also meet all of these conditions:

a) The modified work must itself be a software library.

b) You must cause the files modified to carry prominent notices

stating that you changed the files and the date of any change.

c) You must cause the whole of the work to be licensed at no

charge to all third parties under the terms of this License.

d) If a facility in the modified Library refers to a function or a

table of data to be supplied by an application program that uses

the facility, other than as an argument passed when the facility

is invoked, then you must make a good faith effort to ensure that,

in the event an application does not supply such function or

table, the facility still operates, and performs whatever part of

its purpose remains meaningful.

APPENDIX A. GNU LESSER GENERAL PUBLIC LICENSE (LGPL) 144

(For example, a function in a library to compute square roots has

a purpose that is entirely well-defined independent of the

application. Therefore, Subsection 2d requires that any

application-supplied function or table used by this function must

be optional: if the application does not supply it, the square

root function must still compute square roots.)

These requirements apply to the modified work as a whole. If

identifiable sections of that work are not derived from the Library,

and can be reasonably considered independent and separate works in

themselves, then this License, and its terms, do not apply to those

sections when you distribute them as separate works. But when you

distribute the same sections as part of a whole which is a work based

on the Library, the distribution of the whole must be on the terms of

this License, whose permissions for other licensees extend to the

entire whole, and thus to each and every part regardless of who wrote

it.

Thus, it is not the intent of this section to claim rights or contest

your rights to work written entirely by you; rather, the intent is to

exercise the right to control the distribution of derivative or

collective works based on the Library.

In addition, mere aggregation of another work not based on the Library

with the Library (or with a work based on the Library) on a volume of

a storage or distribution medium does not bring the other work under

the scope of this License.

3. You may opt to apply the terms of the ordinary GNU General Public

License instead of this License to a given copy of the Library. To do

this, you must alter all the notices that refer to this License, so

that they refer to the ordinary GNU General Public License, version 2,

instead of to this License. (If a newer version than version 2 of the

ordinary GNU General Public License has appeared, then you can specify

that version instead if you wish.) Do not make any other change in

these notices.

Once this change is made in a given copy, it is irreversible for

that copy, so the ordinary GNU General Public License applies to all

subsequent copies and derivative works made from that copy.

This option is useful when you wish to copy part of the code of

the Library into a program that is not a library.

4. You may copy and distribute the Library (or a portion or

derivative of it, under Section 2) in object code or executable form

under the terms of Sections 1 and 2 above provided that you accompany

it with the complete corresponding machine-readable source code, which

must be distributed under the terms of Sections 1 and 2 above on a

APPENDIX A. GNU LESSER GENERAL PUBLIC LICENSE (LGPL) 145

medium customarily used for software interchange.

If distribution of object code is made by offering access to copy

from a designated place, then offering equivalent access to copy the

source code from the same place satisfies the requirement to

distribute the source code, even though third parties are not

compelled to copy the source along with the object code.

5. A program that contains no derivative of any portion of the

Library, but is designed to work with the Library by being compiled or

linked with it, is called a "work that uses the Library". Such a

work, in isolation, is not a derivative work of the Library, and

therefore falls outside the scope of this License.

However, linking a "work that uses the Library" with the Library

creates an executable that is a derivative of the Library (because it

contains portions of the Library), rather than a "work that uses the

library". The executable is therefore covered by this License.

Section 6 states terms for distribution of such executables.

When a "work that uses the Library" uses material from a header file

that is part of the Library, the object code for the work may be a

derivative work of the Library even though the source code is not.

Whether this is true is especially significant if the work can be

linked without the Library, or if the work is itself a library. The

threshold for this to be true is not precisely defined by law.

If such an object file uses only numerical parameters, data

structure layouts and accessors, and small macros and small inline

functions (ten lines or less in length), then the use of the object

file is unrestricted, regardless of whether it is legally a derivative

work. (Executables containing this object code plus portions of the

Library will still fall under Section 6.)

Otherwise, if the work is a derivative of the Library, you may

distribute the object code for the work under the terms of Section 6.

Any executables containing that work also fall under Section 6,

whether or not they are linked directly with the Library itself.

6. As an exception to the Sections above, you may also combine or

link a "work that uses the Library" with the Library to produce a

work containing portions of the Library, and distribute that work

under terms of your choice, provided that the terms permit

modification of the work for the customer’s own use and reverse

engineering for debugging such modifications.

You must give prominent notice with each copy of the work that the

Library is used in it and that the Library and its use are covered by

this License. You must supply a copy of this License. If the work

during execution displays copyright notices, you must include the

APPENDIX A. GNU LESSER GENERAL PUBLIC LICENSE (LGPL) 146

copyright notice for the Library among them, as well as a reference

directing the user to the copy of this License. Also, you must do one

of these things:

a) Accompany the work with the complete corresponding

machine-readable source code for the Library including whatever

changes were used in the work (which must be distributed under

Sections 1 and 2 above); and, if the work is an executable linked

with the Library, with the complete machine-readable "work that

uses the Library", as object code and/or source code, so that the

user can modify the Library and then relink to produce a modified

executable containing the modified Library. (It is understood

that the user who changes the contents of definitions files in the

Library will not necessarily be able to recompile the application

to use the modified definitions.)

b) Use a suitable shared library mechanism for linking with the

Library. A suitable mechanism is one that (1) uses at run time a

copy of the library already present on the user’s computer system,

rather than copying library functions into the executable, and (2)

will operate properly with a modified version of the library, if

the user installs one, as long as the modified version is

interface-compatible with the version that the work was made with.

c) Accompany the work with a written offer, valid for at

least three years, to give the same user the materials

specified in Subsection 6a, above, for a charge no more

than the cost of performing this distribution.

d) If distribution of the work is made by offering access to copy

from a designated place, offer equivalent access to copy the above

specified materials from the same place.

e) Verify that the user has already received a copy of these

materials or that you have already sent this user a copy.

For an executable, the required form of the "work that uses the

Library" must include any data and utility programs needed for

reproducing the executable from it. However, as a special exception,

the materials to be distributed need not include anything that is

normally distributed (in either source or binary form) with the major

components (compiler, kernel, and so on) of the operating system on

which the executable runs, unless that component itself accompanies

the executable.

It may happen that this requirement contradicts the license

restrictions of other proprietary libraries that do not normally

accompany the operating system. Such a contradiction means you cannot

use both them and the Library together in an executable that you

distribute.

APPENDIX A. GNU LESSER GENERAL PUBLIC LICENSE (LGPL) 147

7. You may place library facilities that are a work based on the

Library side-by-side in a single library together with other library

facilities not covered by this License, and distribute such a combined

library, provided that the separate distribution of the work based on

the Library and of the other library facilities is otherwise

permitted, and provided that you do these two things:

a) Accompany the combined library with a copy of the same work

based on the Library, uncombined with any other library

facilities. This must be distributed under the terms of the

Sections above.

b) Give prominent notice with the combined library of the fact

that part of it is a work based on the Library, and explaining

where to find the accompanying uncombined form of the same work.

8. You may not copy, modify, sublicense, link with, or distribute

the Library except as expressly provided under this License. Any

attempt otherwise to copy, modify, sublicense, link with, or

distribute the Library is void, and will automatically terminate your

rights under this License. However, parties who have received copies,

or rights, from you under this License will not have their licenses

terminated so long as such parties remain in full compliance.

9. You are not required to accept this License, since you have not

signed it. However, nothing else grants you permission to modify or

distribute the Library or its derivative works. These actions are

prohibited by law if you do not accept this License. Therefore, by

modifying or distributing the Library (or any work based on the

Library), you indicate your acceptance of this License to do so, and

all its terms and conditions for copying, distributing or modifying

the Library or works based on it.

10. Each time you redistribute the Library (or any work based on the

Library), the recipient automatically receives a license from the

original licensor to copy, distribute, link with or modify the Library

subject to these terms and conditions. You may not impose any further

restrictions on the recipients’ exercise of the rights granted herein.

You are not responsible for enforcing compliance by third parties with

this License.

11. If, as a consequence of a court judgment or allegation of patent

infringement or for any other reason (not limited to patent issues),

conditions are imposed on you (whether by court order, agreement or

otherwise) that contradict the conditions of this License, they do not

excuse you from the conditions of this License. If you cannot

distribute so as to satisfy simultaneously your obligations under this

License and any other pertinent obligations, then as a consequence you

may not distribute the Library at all. For example, if a patent

APPENDIX A. GNU LESSER GENERAL PUBLIC LICENSE (LGPL) 148

license would not permit royalty-free redistribution of the Library by

all those who receive copies directly or indirectly through you, then

the only way you could satisfy both it and this License would be to

refrain entirely from distribution of the Library.

If any portion of this section is held invalid or unenforceable under any

particular circumstance, the balance of the section is intended to apply,

and the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any

patents or other property right claims or to contest validity of any

such claims; this section has the sole purpose of protecting the

integrity of the free software distribution system which is

implemented by public license practices. Many people have made

generous contributions to the wide range of software distributed

through that system in reliance on consistent application of that

system; it is up to the author/donor to decide if he or she is willing

to distribute software through any other system and a licensee cannot

impose that choice.

This section is intended to make thoroughly clear what is believed to

be a consequence of the rest of this License.

12. If the distribution and/or use of the Library is restricted in

certain countries either by patents or by copyrighted interfaces, the

original copyright holder who places the Library under this License may add

an explicit geographical distribution limitation excluding those countries,

so that distribution is permitted only in or among countries not thus

excluded. In such case, this License incorporates the limitation as if

written in the body of this License.

13. The Free Software Foundation may publish revised and/or new

versions of the Lesser General Public License from time to time.

Such new versions will be similar in spirit to the present version,

but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Library

specifies a version number of this License which applies to it and

"any later version", you have the option of following the terms and

conditions either of that version or of any later version published by

the Free Software Foundation. If the Library does not specify a

license version number, you may choose any version ever published by

the Free Software Foundation.

14. If you wish to incorporate parts of the Library into other free

programs whose distribution conditions are incompatible with these,

write to the author to ask for permission. For software which is

copyrighted by the Free Software Foundation, write to the Free

Software Foundation; we sometimes make exceptions for this. Our

decision will be guided by the two goals of preserving the free status

APPENDIX A. GNU LESSER GENERAL PUBLIC LICENSE (LGPL) 149

of all derivatives of our free software and of promoting the sharing

and reuse of software generally.

NO WARRANTY

15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO

WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW.

EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR

OTHER PARTIES PROVIDE THE LIBRARY "AS IS" WITHOUT WARRANTY OF ANY

KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE

IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR

PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE

LIBRARY IS WITH YOU. SHOULD THE LIBRARY PROVE DEFECTIVE, YOU ASSUME

THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN

WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY

AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LIABLE TO YOU

FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR

CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE

LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING

RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A

FAILURE OF THE LIBRARY TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF

SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH

DAMAGES.

END OF TERMS AND CONDITIONS

APPENDIX A. GNU LESSER GENERAL PUBLIC LICENSE (LGPL) 150

How to Apply These Terms to Your New Libraries

If you develop a new library, and you want it to be of the greatest

possible use to the public, we recommend making it free software that

everyone can redistribute and change. You can do so by permitting

redistribution under these terms (or, alternatively, under the terms of the

ordinary General Public License).

To apply these terms, attach the following notices to the library. It is

safest to attach them to the start of each source file to most effectively

convey the exclusion of warranty; and each file should have at least the

"copyright" line and a pointer to where the full notice is found.

<one line to give the library’s name and a brief idea of what it does.>

Copyright (C) <year> <name of author>

This library is free software; you can redistribute it and/or

modify it under the terms of the GNU Lesser General Public

License as published by the Free Software Foundation; either

version 2.1 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public

License along with this library; if not, write to the Free Software

Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Also add information on how to contact you by electronic and paper mail.

You should also get your employer (if you work as a programmer) or your

school, if any, to sign a "copyright disclaimer" for the library, if

necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the

library ‘Frob’ (a library for tweaking knobs) written by James Random Hacker.

<signature of Ty Coon>, 1 April 1990

Ty Coon, President of Vice

That’s all there is to it!

Appendix B

SRFI 27: Sources of
Random Bits

Title

SRFI 27: Sources of Random Bits

Author

Sabastan Egner

Status

This SRFI is currently in “final” status. To see an explanation of each status that
a SRFI can hold, see here. You can access previous messages via the archive of the
mailing list.

• Draft: 2002/02/12-2002/04/12

• Revised: 2002/04/04

• Revised: 2002/04/10

• Revised: 2002/04/10

• Final: 2002/06/03

Abstract

This document specifies an interface to sources of random bits, or ”random sources”
for brevity. In particular, there are three different ways to use the interface, with vary-
ing demands on the quality of the source and the amout of control over the production
process:

• The ”no fuss” interface specifies that (random-source n) produces the next
random integer in {0, ..., n − 1} and (random-real) produces the next random
real number between zero and one. The details of how these random values are

151

APPENDIX B. SRFI 27: SOURCES OF RANDOM BITS 152

produced may not be very relevant, as long as they appear to be sufficiently
random.

• For simulation purposes, on the contrary, it is usually necessary to know that the
numbers are produced deterministically by a pseudo random number generator
of high quality and to have explicit access to its state. In addition, one might
want to use several independent sources of random numbers at the same time
and it can be useful to have some simple form of randomization.

• For security applications a serious form of true randomization is essential, in the
sense that it is difficult for an adversary to exploit or introduce imperfections
into the distribution of random bits. Moreover, the linear complexity of the
stream of random bits is more important than its statistical properties. In these
applications, an entropy source (producing truely random bits at a low rate) is
used to randomize a pseudo random number generator to increase the rate of
available bits.

Once random sources provide the infrastructure to obtain random bits, these can
be used to construct other random deviates. Most important are floating point num-
bers of various distributions and random discrete structures, such as permutations
or graphs. As there is an essentially unlimited number of such objects (with limited
use elsewhere), we do not include them in this SRFI. In other words, this SRFI is
not about making all sorts of random objects—it is about obtaining random bits in a
portable, flexible, reliable, and efficient way.

Rationale

This SRFI defines an interface for sources of random bits computed by a pseudo
random number generator. The interface provides range-limited integer and real num-
bers. It allows accessing the state of the underlying generator. Moreover, it is possible
to obtain a large number of independent generators and to invoke a mild form of true
randomization.

The design aims at sufficient flexibility to cover the usage patterns of many ap-
plications as diverse as discrete structures, numerical simulations, and cryptographic
protocols. At the same time, the interface aims at simplicity, which is important for
occasional use. As there is no ”one size fits all” random number generator, the de-
sign necessarily represents some form of compromise between the needs of the various
applications.

Although strictly speaking not part of the specification, the emphasis of this pro-
posal is on high quality random numbers and on high performance. As the state of the
art in pseudo random number generators is still advancing considerably, the choice of
method for the reference implementation should essentially be considered preliminary.

Specification

(random-integer n) → x

The next integer x in {0, ..., n−1} obtained from default-random-source.
Subsequent results of this procedure appear to be independent uniformly
distributed over the range {0, ..., n − 1}. The argument n must be a
positive integer, otherwise an error is signalled.

(random-real) to x

APPENDIX B. SRFI 27: SOURCES OF RANDOM BITS 153

The next number 0 < x < 1 obtained from default-random-source.
Subsequent results of this procedure appear to be independent uniformly
distributed. The numerical type of the results and the quantization of the
output range depend on the implementation; refer to random-source-

make-reals for details.

default-random-source

A random source from which random-integer and random-real have been
derived using random-source-make-integers and random-source-make-

reals. Note that an assignment to default-random-source does not
change random or random-real; it is also strongly recommended not to
assign a new value.

(make-random-source) to s

Creates a new random source s. Implementations may accept additional,
optional arguments in order to create different types of random sources. A
random source created with make-random-source represents a determinis-
tic stream of random bits generated by some form of pseudo random num-
ber generator. Each random source obtained as (make-random-source)
generates the same stream of values, unless the state is modified with one
of the procedures below.

(random-source? obj) → bool

Tests if obj is a random source. Objects of type random source are distinct
from all other types of objects.

(random-source-state-ref s) to state
(random-source-state-set! s state)

Get and set the current state of a random source s. The structure of the
object state depends on the implementation; the only portable use of it is
as argument to random-source-state-set!. It is, however, required that
a state possess an external representation.

(random-source-randomize! s)

Makes an effort to set the state of the random source s to a truly random
state. The actual quality of this randomization depends on the imple-
mentation but it can at least be assumed that the procedure sets s to a
different state for each subsequent run of the Scheme system.

(random-source-pseudo-randomize! s i j)

Changes the state of the random source s into the initial state of the
(i, j)th independent random source, where i and j are non-negative in-
tegers. This procedure provides a mechanism to obtain a large number
of independent random sources (usually all derived from the same back-
bone generator), indexed by two integers. In contrast to random-source-

randomize!, this procedure is entirely deterministic.

(random-source-make-integers s) → rand

Obtains a procedure rand to generate random integers using the random
source s. Rand takes a single argument n, which must be a positive
integer, and returns the next uniformly distributed random integer from
the interval {0, ..., n − 1} by advancing the state of the source s.

APPENDIX B. SRFI 27: SOURCES OF RANDOM BITS 154

If an application obtains and uses several generators for the same random
source s, a call to any of these generators advances the state of s. Hence,
the generators do not produce the same sequence of random integers each
but rather share a state. This also holds for all other types of genera-
tors derived from a fixed random sources. Implementations that support
concurrency make sure that the state of a generator is properly advanced.

(random-source-make-reals s) → rand
(random-source-make-reals s unit) → rand

Obtains a procedure rand to generate random real numbers 0 < x < 1
using the random source s. The procedure rand is called without argu-
ments.

The optional parameter unit determines the type of numbers being pro-
duced by rand and the quantization of the output. Unit must be a number
such that 0 < unit < 1. The numbers created by rand are of the same
numerical type as unit and the potential output values are spaced by at
most unit. One can imagine rand to create numbers as x ∗ unit where x
is a random integer in {1, ..., floor(1/unit)− 1}. Note, however, that this
need not be the way the values are actually created and that the actual
resolution of rand can be much higher than unit. In case unit is absent it
defaults to a reasonably small value (related to the width of the mantissa
of an efficient number format).

Design Rationale

Why not combine random-integer and random-real?

The two procedures are not combined into a single variable-arity procedures to save a
little time and space during execution. Although some Scheme systems can deal with
variable arity as efficiently as with fixed arity this is not always the case and time
efficiency is very important here.

Why not some object-oriented interface?

There are many alternatives to the interface as specified in this SRFI. In particu-
lar, every framework for object-orientation can be used to define a class for random
sources and specify the interface for the methods on random sources. However, as the
object-oriented frameworks differ considerably in terms of syntax and functionality,
this SRFI does not make use of any particular framework.

Why is there not just a generator with a fixed range?

A bare fixed-range generator is of very limited use. Nearly every application has
to add some functionality to make use of the random numbers. The most fundamen-
tal task in manipulating random numbers is to change the range and quantization.
This is exactly what is provided by random-integer and random-real. In addition, is
saves the user from the pitfall of changing the range with a simple modulo-computation
which may substantially reduce the quality of the numbers being produced.

The design of the interface is based on three prototype applications:

APPENDIX B. SRFI 27: SOURCES OF RANDOM BITS 155

1. Repeatedly choose from relatively small sets: As the size of the set is likely to
vary from call to call, random-integer accepts a range argument n in every call.
The implementation should try to avoid boxing/unboxing of values if the ranges
fit into immediate integers.

2. Generate a few large integers with a fixed number of bits: As generating the
random number itself is expensive, passing the range argument in every call does
not hurt performance. Hence, the same interface as in the first application can
be used.

3. Generate real numbers: Unlike the choose-from-set case, the range and the
quantization is constant over a potentially very large number of calls. In addi-
tion, there are usually just a few distinct instances of quantization and number
type, most likely corresponding to underlying float and double representa-
tions. Therefore, random-real does not accept any parameters but the pro-
cedure random-source-make-reals creates a properly configured random-real

procedure.

Why bother about floating point numbers at all?

A proper floating point implementation of a random number generator is potentially
much more efficient that an integer implementation because it can use more powerful
arithmetics hardware. If in addition the application needs floating point random num-
bers it would be an intolerable waste to run an integer generator to produce floating
point random numbers. A secondary reason is to save the user from the ’not as easy
as it seems’ task of converting an integer generator into a real generator.

Why are zero and one excluded from random-real?

The procedure random-real does not return x = 0 or x = 1 in order to allow (log x)

and (log (- 1 x)) without the danger of a numerical exception.

Implementatiom

Choice of generator

The most important decision about the implementation is the choice of the random
number generator. The basic principle here is: Let quality prevail! In the end, a per-
formance penalty of a better generator may be a cheap price to pay for some avoided
catastrophes. It may be unexpected, but I have also seen many examples where the
better generator was also the faster. Simple linear congruential generator cannot be
recommended as they tend to be ill-behaved in several ways. For this reason, my
initial proposal was George Marsaglia’s COMBO generator, which is the combination
of a 32-bit multiplicative lagged Fibonacci-generator with a 16-bit multiply with carry
generator. The COMBO generator passes all tests of Marsaglia’s DIEHARD testsuite
for random number generators and has a period of order 260.

As an improvement, Brad Lucier suggested suggested Pierre L’Ecuyer’s MRG32k3a
generator which is combination of two recursive generators of degree three, both of
which fit into 54-bit arithmetics. The MRG32k3a generator also passes DIEHARD and
in addition, has desireable spectral properties and a period in the order of 2191. As
a matter of fact, multiple recursive generators (MRGs) are theoretically much better

APPENDIX B. SRFI 27: SOURCES OF RANDOM BITS 156

understood than special constructions as the COMBO generator. This is the reason
why the implementations provided here implements the MRG32k3a generator. When
implemented in floating point arithmetics with sufficient mantissa-width, this genera-
tor is also very fast.

Choice of arithmetics

The next important decision about the implementation is the type of arithmetics to
be used. The choice is difficult and depends heavily on the underlying Scheme system
and even on the underlying hardware platform and architecture. For the MRG32k3a
generator, use 64-bit arithmetics if you really have it. If not, use a floating point
ALU if it gives you 54 or more bits of mantissa. And if you do not have floats either,
then at least try to make sure you work with immediate integers (instead of allocated
objects). Unfortunately, there is no portable way in Scheme to find out about native
and emulated arithmetics.

As performance is critical to many applications, one might want to implement the
actual generator itself in native code. For this reason, I provide three different im-
plementations of the backbone generator as a source of inspiration. See the code below.

Data Type for Random Sources

An important aspect of the specification in this SRFI is that random sources are
objects of a distinct type. Although this is straight-forward and available in nearly
every Scheme implementation, there is no portable way to do this at present. One
way to define the record type is to use SRFI-9.

The reference implementations below define a record type to contain the exported
procedures. The actual state of the generator is stored in the binding time environ-
ment of make-random-source. This has the advantage that access to the state is fast
even if the record type would be slow (which need not be the case).

Entropy Source for Randomization

Another problematic part of the specification with respect to portability is random-

source-randomize! as it needs access to a real entropy source. A reasonable choice for
such as source is to use the system clock in order to obtain a value for randomization,
for example in the way John David Stone recommends (see reference below). This
is good enough for most applications with the notable exception of security related
programs. One way to obtain the time in Scheme is to use SRFI-19.

Implementation of the specified interface

Once the portability issues are resolved, one can provide the remaining functional-
ity as specified in this SRFI document. For the reference implementation, a relatively
large part of the code deals with the more advanced features of the MRG32k3a genera-
tor, in particular random-source-pseudo-randomize!. This code is inspired by Pierre
L’Ecuyer’s own implementation of the MRG32k3a generator.

Another part of this generic code deals with changing the range and quantization
of the random numbers and with error checking to detect common mistakes and abuses.

APPENDIX B. SRFI 27: SOURCES OF RANDOM BITS 157

Implementation Examples

Here are three alternative implementations of the SRFI. (Here are all files, tar-gzipped,
13020 bytes.) Keep in mind that a SRFI is a ”request for implementation”, which
means these implementations are merely examples to illustrate the specification and
inspire people to implement it better and faster. The performance figures below are
rough indications measured on a Pentium3, 800 Mhz, Linux; x int/s, y real/s means
(random-integer 2) can be computed about x times a second and (random-real)

about y times a second. The implementations are

1. for Scheme 48 0.57, using 54-bit integer only. This implementation aims at
portability, not at performance (30000 ints/s, 3000/s reals/s).

2. for Scheme 48 0.57 with the core generator being implemented in C using
(double)-arithmetics. The generator is made available in Scheme 48 via the
C/Scheme interface. The performance of this generator is good (160000 ints/s,
180000 reals/s).

3. for Gambit 3.0, using flonum and 54-bit integer. This code is inspired by
a program by Brad Lucier as posted to the discussion archive of this SRFI.
The performance of this generator is good when compiled (5000 ints/s, 25000/s
reals/s when interpreted, 200000 ints/s, 400000/s reals/s when compiled; see
acknowledgements).

In addition to the implementations there is a small collection of confidence tests
for the interface specified. The tests merely check a few assertions expressed by the
specification. It is not the intention to provide a complete test of the interface here. It
is even less the intention to provide statistical tests of the generator itself. However,
there is a function to write random bits from the generators to a file in a way readable
by the DIEHARD testsuite. This makes it easier for implementors to find out about
their favorite generators and check their implementation.

Recommended Usage Patterns

Unless the functionality defined in this SRFI is sufficient, an application has to imple-
ment more procedures to construct other random deviates. This section contains some
recommendation on how to do this technically by presenting examples of increasing
difficulty with respect to the interface. Note that the code below is not part of the
specification, it is merely meant to illustrate the spirit.

Generating Random Permutations

The following code defines procedures to generate random permutations of the set
{0, ..., n − 1}. Such a permutation is represented by a vector of length n for the
images of the points.

Observe that the implementation first defines the procedure random-source-make-
permutations to turn a random source s into a procedure to generate permutations of
given degree n. In a second step, this is applied to the default source to define a ready-
to-use procedure for permutations: (random-permutation n) constructs a random
permutation of degree n.

(define (random-source-make-permutations s)

(let ((rand (random-source-make-integers s)))

APPENDIX B. SRFI 27: SOURCES OF RANDOM BITS 158

(lambda (n)

(let ((x (make-vector n 0)))

(do ((i 0 (+ i 1)))

((= i n))

(vector-set! x i i))

(do ((k n (- k 1)))

((= k 1) x)

(let* ((i (- k 1))

(j (rand k))

(xi (vector-ref x i))

(xj (vector-ref x j)))

(vector-set! x i xj)

(vector-set! x j xi)))))))

(define random-permutation

(random-source-make-permutations default-random-source))

For the algorithm refer to Knuth’s ”The Art of Computer Programming”, Vol. II,
2nd ed., Algorithm P of Section 3.4.2.

Generating Exponentially-Distributed Random Numbers

The following code defines procedures to generate exponentially Exp(mu)-distributed
random numbers. The technical difficulty of the interface addressed here is how to
pass optional arguments to random-source-make-reals.

(define (random-source-make-exponentials s . unit)

(let ((rand (apply random-source-make-reals s unit)))

(lambda (mu)

(- (* mu (log (rand)))))))

(define random-exponential

(random-source-make-exponentials default-random-source))

The algorithm is folklore. Refer to Knuth’s ”The Art of Computer Programming”,
Vol. II, 2nd ed., Section 3.4.1.D.

Generating Normally-Distributed Random Numbers

The following code defines procedures to generate normal N(mu, sigma)-distributed
real numbers using the polar method. The technical difficulty of the interface addressed
here is that the polar method generates two results per computation. We return one
of the result and store the second one to be returned by the next call to the procedure.
Note that this implies that random-source-state-set! (and the other procedures
modifying the state) does not necessarily affect the output of random-normal imme-
diately!

(define (random-source-make-normals s . unit)

(let ((rand (apply random-source-make-reals s unit))

(next #f))

APPENDIX B. SRFI 27: SOURCES OF RANDOM BITS 159

(lambda (mu sigma)

(if next

(let ((result next))

(set! next #f)

(+ mu (* sigma result)))

(let loop ()

(let* ((v1 (- (* 2 (rand)) 1))

(v2 (- (* 2 (rand)) 1))

(s (+ (* v1 v1) (* v2 v2))))

(if (>= s 1)

(loop)

(let ((scale (sqrt (/ (* -2 (log s)) s))))

(set! next (* scale v2))

(+ mu (* sigma scale v1))))))))))

(define random-normal

(random-source-make-normals default-random-source))

For the algorithm refer to Knuth’s ”The Art of Computer Programming”, Vol. II,
2nd ed., Algorithm P of Section 3.4.1.C.

Acknowledgements

I would like to thank all people who have participated in the discussion, in partic-
ular Brad Lucier and Pierre l’Ecuyer. Their contributions have greatly improved the
design of this SRFI. Moreover, Brad has optimized the Gambit implementation quite
substantially.

References

1. G. Marsaglia: Diehard – Testsuite for Random Number Generators. stat.fsu.edu/
∼geo/diehard.html (Also contains some enerators that do pass Diehard.)

2. D. E. Knuth: The Art of Computer Programming; Volume II Seminumerical
Algorithms. 2nd ed. Addison-Wesley, 1981. (The famous chapter on random
number generators.)

3. P. L’Ecuyer: ”Software for Uniform Random Number Generation: Distinguish-
ing the Good and the Bad”, Proceedings of the 2001 Winter Simulation Confer-
ence, IEEE Press, Dec. 2001, 95–105. www.iro.umontreal.ca/∼lecuyer/myftp
/papers/wsc01rng.pdf (Profound discussion of random number generators.)

4. P. L’Ecuyer: ”Good Parameter Sets for Combined Multiple Recursive Random
Number Generators”, Shorter version in Operations Research, 47, 1 (1999),
159–164. www.iro.umontreal.ca/∼lecuyer/myftp/papers/combmrg2.ps (Actual
numbers for good generators.)

5. P. L’Ecuyer: ”Software for Uniform Random Number Generation: Distinguish-
ing the Good and the Bad”, Proceedings of the 2001 Winter Simulation Con-
ference, IEEE Press, Dec. 2001, 95–105.

6. MIT Scheme v7.6: random flo:random-unit *random-state* make-random-state
random-state? http://www.swiss.ai.mit.edu/projects/scheme/documenta

APPENDIX B. SRFI 27: SOURCES OF RANDOM BITS 160

tion/scheme_5.html#SEC53 (A mechanism to run a fixed unspecified genera-
tor.)

7. A. Jaffer: SLIB 2d2 with (require ’random): random *random-state* copy-
random-state seed-¿random-state make-random-state random:uniform random:
exp random:normal-vector! random-hollow-sphere! random:solid-sphere! http:

//www.swiss.ai.mit.edu/\simjaffer/slib_4.html#SEC92 (Based on the
MIT Scheme mechanism.)

8. R. Kelsey, J. Rees: Scheme 48 v0.57 ’random.scm’: make-random make-random-
vector (Internal procedures of Scheme48; a fixed 28-bit generator.)

9. M. Flatt: PLT MzScheme Version 200alpha1: random random-seed current-
pseudo-random-generator make-pseudo-random-generator pseudo-random-
generator? http://download.plt-scheme.org/doc/200alpha1/html/mzscheme

/mzscheme-Z-H-3.html#_idx_144 (A mechanism to run a generator and to ex-
change the generator.)

10. H. Abelson, G. J. Sussmann, J. Sussman: Structure and Interpretation of Com-
puter Programs. http://mitpress.mit.edu/sicp/full-text/book/

book-Z-H-20.html#_idx_2934 (The rand-example shows a textbook way to
define a random number generator.)

11. John David Stone: A portable random-number generator. http://

www.math.grin.edu/~stone/events/scheme-workshop/random.html (An imple-
mentation of a linear congruental generator in Scheme.)

12. Network Working Group: RFC1750: Randomness Recommendations for Secu-
rity. http://www.cis.ohio-state.edu/htbin/rfc/rfc1750.html (A serious discus-
sion of serious randomness for serious security.)

13. http://www.random.org/essay.html

14. http://www.taygeta.com/random/randrefs.html (Resources on random number
generators and randomness.)

Copyright

Copyright c© Sebastian Egner (2002). All Rights Reserved.
This document and translations of it may be copied and furnished to others, and

derivative works that comment on or otherwise explain it or assist in its implementation
may be prepared, copied, published and distributed, in whole or in part, without
restriction of any kind, provided that the above copyright notice and this paragraph
are included on all such copies and derivative works. However, this document itself
may not be modified in any way, such as by removing the copyright notice or references
to the Scheme Request For Implementation process or editors, except as needed for
the purpose of developing SRFIs in which case the procedures for copyrights defined
in the SRFI process must be followed, or as required to translate it into languages
other than English.

The limited permissions granted above are perpetual and will not be revoked by
the authors or their successors or assigns.

This document and the information contained herein is provided on an ”AS IS” ba-
sis and THE AUTHOR AND THE SRFI EDITORS DISCLAIM ALL WARRANTIES,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY

APPENDIX B. SRFI 27: SOURCES OF RANDOM BITS 161

THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY
RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FIT-
NESS FOR A PARTICULAR PURPOSE.

Bibliography

[1] Free Software Foundation, GNU Lesser General Public License, Version 2.1,
February 1999

[2] M. Galassi et al, GNU Scientific Library Reference Manual (2nd Ed.), ISBN
0954161734

[3] M. Flatt et al, PLT MzScheme: Reference Manual, http://plt-scheme.org/

[4] M. Flatt et al, PLT MzLib: Reference Manual, http://plt-scheme.org/

[5] M. Flatt et al, PLT MrEd: Graphical Toolbox Manual, http://plt-scheme.org/

[6] PLaneT Package Repository, http://planet.plt-scheme.org/

[7] PLoT Scheme, http://plt-scheme.org/

[8] Williams, M. Douglas, PLT Scheme Simulation Collection Reference Manual

162

Index

absolute-deviation, 95
acosh, 12
asinh, 12
atanh, 12

bernoulli-cdf, 78
bernoulli-pdf, 78
bernoulli-plot, 79
beta-pdf, 38
beta-plot, 38
binomial-pdf, 81
binomial-plot, 81
bivariate-gaussian-pdf, 41
bivariate-gaussian-plot, 42

chebyshev-eval, 136
chebyshev-eval-n, 136
chebyshev-series, 135
chebyshev-series-init, 136
chi-squared-pdf, 44
chi-squared-plot, 44
choose, 21
covariance, 97
covariance-with-fixed-means, 97
current-random-source, 33

default-random-source, 31, 153
discrete-cdf, 92
discrete-histogram-accumulate!, 120
discrete-histogram-bins, 119
discrete-histogram-dynamic?, 119
discrete-histogram-get, 120
discrete-histogram-increment!, 120
discrete-histogram-max, 120
discrete-histogram-min, 120
discrete-histogram-n1, 119
discrete-histogram-n2, 119
discrete-histogram-plot, 121
discrete-histogram-plot-scaled, 121
discrete-histogram-sum, 120

discrete-histogram?, 117
discrete-pdf, 92
discrete-plot, 93
discrete?, 91
double-fact, 21

erf, 14
erfc, 15
eta, 29
eta-int, 28
expm1, 12
exponential-cdf, 46
exponential-pdf, 46
exponential-plot, 47

f-distribution-pdf, 49
f-distribution-plot, 50
factorial, 21
fcmp, 13
finite?, 11
flat-cdf, 52
flat-pdf, 52
flat-plot, 53
frexp, 12

gamma, 18
gamma-inv, 20
gamma-pdf, 54
gamma-plot, 55
gamma-xmax, 18
gammastar, 20
gaussian-cdf, 59
gaussian-pdf, 59
gaussian-plot, 60
gaussian-tail-pdf, 63
gaussian-tail-plot, 65
geometric-pdf, 84
geometric-plot, 85

hazard, 17
histogram-2d-accumulate!, 115

163

INDEX 164

histogram-2d-bins, 114
histogram-2d-covariance, 116
histogram-2d-get, 115
histogram-2d-get-x-range, 115
histogram-2d-get-y-range, 115
histogram-2d-increment!, 114
histogram-2d-max, 115
histogram-2d-min, 115
histogram-2d-nx, 113
histogram-2d-ny, 113
histogram-2d-plot, 117
histogram-2d-sum, 116
histogram-2d-x-mean, 116
histogram-2d-x-ranges, 113
histogram-2d-x-sigma, 116
histogram-2d-y-mean, 116
histogram-2d-y-ranges, 114
histogram-2d-y-sigma, 116
histogram-2d?, 112
histogram-accumulate!, 109
histogram-bins, 108
histogram-get, 109
histogram-get-range, 109
histogram-increment!, 109
histogram-max, 109
histogram-mean, 109
histogram-min, 109
histogram-n, 108
histogram-plot, 110
histogram-plot-scaled, 110
histogram-ranges, 108
histogram-sigma, 110
histogram-sum, 110
histogram?, 107
hypot, 12
hzeta, 27

infinite?, 10

kurtosis, 96

lag-1-autocorrelation, 96
ldexp, 12
lnchoose, 22
lndouble-fact, 21
lnfact, 21
lngamma, 19
lngamma-sgn, 19
log1p, 11
logarithmic-pdf, 86

logarithmic-plot, 87
lognormal-cdf, 67
lognormal-pdf, 67
lognormal-plot, 68

make-chebyshev-series-order, 136
make-discrete, 91
make-discrete-histogram, 119
make-histogram, 107
make-histogram-2d, 113
make-histogram-2d-with-ranges-uniform,

113
make-histogram-with-ranges-uniform,

108
make-ode-evolve, 129
make-ode-step, 125
make-random-source, 31, 153
make-random-source-vector, 34
maximum, 101
maximum-index, 102
mean, 94
median-from-sorted-data, 102
minimum, 101
minimum-index, 102
minimum-maximum, 101
minimum-maximum-index, 102

nan?, 10

ode-control, 128
ode-control-h-adjust, 128
ode-control-init, 128
ode-control-name, 128
ode-control-scaled-new, 127
ode-control-standard-new, 126
ode-control-y-new, 127
ode-control-yp-new, 127
ode-evolve-apply, 129
ode-evolve-reset, 129
ode-step-apply, 126
ode-step-name, 125
ode-step-order, 125
ode-step-reset, 125
ode-step-rk2, 126
ode-step-rk4, 126
ode-step-rkf45, 126
ode-system, 124

pareto-cdf, 71
pareto-pdf, 70

INDEX 165

pareto-plot, 71
poisson-pdf, 89
poisson-plot, 90
psi, 22
psi-1, 23
psi-1-int, 23
psi-1piy, 22
psi-int, 22
psi-n, 24

quantile-from-sorted-data, 102

random-bernoulli, 78
random-beta, 38
random-binomial, 81
random-bivariate-gaussian, 40
random-chi-squared, 42
random-discrete, 91
random-exponential, 46
random-f-distribution, 48
random-flat, 50
random-gamma, 53
random-gaussian, 56
random-gaussian-ratio-method, 59
random-gaussian-tail, 61
random-geometric, 83
random-integer, 30, 152
random-logarithmic, 86
random-lognormal, 67
random-pareto, 69
random-poisson, 88
random-real, 30, 152
random-source-make-integers, 32, 153
random-source-make-reals, 32, 154
random-source-pseudo-randomize!, 32,

153
random-source-randomize!, 31, 153
random-source-state, 34
random-source-state-ref, 31, 153
random-source-state-set!, 31
random-source?, 31, 153
random-t-distribution, 71
random-triangular, 75
random-uniform, 33
random-uniform-int, 33
random-unit-gaussian, 57
random-unit-gaussian-ratio-method,

59
random-unit-gaussian-tail, 62

set-histogram-2d-ranges!, 114
set-histogram-2d-ranges-uniform!, 114
set-histogram-ranges!, 108
set-histogram-ranges-uniform!, 108
set-random-source-state!, 34
sign, 13
skew, 95
standard-deviation, 95
standard-deviation-with-fixed-mean,

95

t-distribution-pdf, 72
t-distribution-plot, 73
triangular-cdf, 76
triangular-pdf, 75
triangular-plot, 77

unit-gaussian-pdf, 59, 60
unit-gaussian-plot, 60
unit-gaussian-tail-pdf, 64
unit-gaussian-tail-plot, 65

variance, 94
variance-with-fixed-mean, 95

weighted-absolute-deviation, 100
weighted-kurtosis, 101
weighted-mean, 98
weighted-skew, 100
weighted-standard-deviation, 99
weighted-standard-deviation-with-fixed-mean,

99
weighted-variance, 98
weighted-variance-with-fixed-mean,

99
with-new-random-source, 33
with-random-source, 33

zeta, 26
zeta-int, 26
zetam1, 27
zetam1-int, 26

