(define r1py-data
#( 1.59888328244976954803168395603
0.67905625353213463845115658455
-0.068485802980122530009506482524
-0.005788184183095866792008831182
0.008511258167108615980419855648
-0.004042656134699693434334556409
0.001352328406159402601778462956
-0.000311646563930660566674525382
0.000018507563785249135437219139
0.000028348705427529850296492146
-0.000019487536014574535567541960
8.0709788710834469408621587335e-06
-2.2983564321340518037060346561e-06
3.0506629599604749843855962658e-07
1.3042238632418364610774284846e-07
-1.2308657181048950589464690208e-07
5.7710855710682427240667414345e-08
-1.8275559342450963966092636354e-08
3.1020471300626589420759518930e-09
6.8989327480593812470039430640e-10
-8.7182290258923059852334818997e-10
4.4069147710243611798213548777e-10
-1.4727311099198535963467200277e-10
2.7589682523262644748825844248e-11
4.1871826756975856411554363568e-12
-6.5673460487260087541400767340e-12
3.4487900886723214020103638000e-12
-1.1807251417448690607973794078e-12
2.3798314343969589258709315574e-13
2.1663630410818831824259465821e-15))
(define r1py-cs
(make-chebyshev-series
r1py-data
29 -1.0 1.0))
(define psics-data
#(-.038057080835217922
.491415393029387130
-.056815747821244730
.008357821225914313
-.001333232857994342
.000220313287069308
-.000037040238178456
.000006283793654854
-.000001071263908506
.000000183128394654
-.000000031353509361
.000000005372808776
-.000000000921168141
.000000000157981265
-.000000000027098646
.000000000004648722
-.000000000000797527
.000000000000136827
-.000000000000023475
.000000000000004027
-.000000000000000691
.000000000000000118
-.000000000000000020))
(define psi-cs
(make-chebyshev-series
psics-data
22 -1.0 1.0))
(define apsics-data
#(-.0204749044678185
-.0101801271534859
.0000559718725387
-.0000012917176570
.0000000572858606
-.0000000038213539
.0000000003397434
-.0000000000374838
.0000000000048990
-.0000000000007344
.0000000000001233
-.0000000000000228
.0000000000000045
-.0000000000000009
.0000000000000002
-.0000000000000000))
(define apsi-cs
(make-chebyshev-series
apsics-data
15 -1.0 1.0))
(define psi-table-nmax 100)
(define psi-table
`#(0.0 ,(- euler) 0.42278433509846713939348790992 0.92278433509846713939348790992
1.25611766843180047272682124325
1.50611766843180047272682124325
1.70611766843180047272682124325
1.87278433509846713939348790992
2.01564147795560999653634505277
2.14064147795560999653634505277
2.25175258906672110764745616389
2.35175258906672110764745616389
2.44266167997581201673836525479
2.52599501330914535007169858813
2.60291809023222227314862166505
2.67434666166079370172005023648
2.74101332832746036838671690315
2.80351332832746036838671690315
2.86233685773922507426906984432
2.91789241329478062982462539988
2.97052399224214905087725697883
3.02052399224214905087725697883
3.06814303986119666992487602645
3.11359758531574212447033057190
3.15707584618530734186163491973
3.1987425128519740085283015864
3.2387425128519740085283015864
3.2772040513135124700667631249
3.3142410883505495071038001619
3.3499553740648352213895144476
3.3844381326855248765619282407
3.4177714660188582098952615740
3.4500295305349872421533260902
3.4812795305349872421533260902
3.5115825608380175451836291205
3.5409943255438998981248055911
3.5695657541153284695533770196
3.5973435318931062473311547974
3.6243705589201332743581818244
3.6506863483938174848844976139
3.6763273740348431259101386396
3.7013273740348431259101386396
3.7257176179372821503003825420
3.7495271417468059598241920658
3.7727829557002943319172153216
3.7955102284275670591899425943
3.8177324506497892814121648166
3.8394715810845718901078169905
3.8607481768292527411716467777
3.8815815101625860745049801110
3.9019896734278921969539597029
3.9219896734278921969539597029
3.9415975165651470989147440166
3.9608282857959163296839747858
3.9796962103242182164764276160
3.9982147288427367349949461345
4.0163965470245549168131279527
4.0342536898816977739559850956
4.0517975495308205809735289552
4.0690389288411654085597358518
4.0859880813835382899156680552
4.1026547480502049565823347218
4.1190481906731557762544658694
4.1351772229312202923834981274
4.1510502388042361653993711433
4.1666752388042361653993711433
4.1820598541888515500147557587
4.1972113693403667015299072739
4.2121367424746950597388624977
4.2268426248276362362094507330
4.2413353784508246420065521823
4.2556210927365389277208378966
4.2697055997787924488475984600
4.2835944886676813377364873489
4.2972931188046676391063503626
4.3108066323181811526198638761
4.3241399656515144859531972094
4.3372978603883565912163551041
4.3502848733753695782293421171
4.3631053861958823987421626300
4.3757636140439836645649474401
4.3882636140439836645649474401
4.4006092930563293435772931191
4.4128044150075488557724150703
4.4248526077786331931218126607
4.4367573696833950978837174226
4.4485220755657480390601880108
4.4601499825424922251066996387
4.4716442354160554434975042364
4.4830078717796918071338678728
4.4942438268358715824147667492
4.5053549379469826935258778603
4.5163439489359936825368668713
4.5272135141533849868846929582
4.5379662023254279976373811303
4.5486045001977684231692960239
4.5591308159872421073798223397
4.5695474826539087740464890064
4.5798567610044242379640147796
4.5900608426370772991885045755
4.6001618527380874001986055856))
(define psi-1-table-nmax 100)
(define psi-1-table
`#(0.0 ,(/ (* pi pi) 6.0) 0.644934066848226436472415 0.394934066848226436472415
0.2838229557371153253613041
0.2213229557371153253613041
0.1813229557371153253613041
0.1535451779593375475835263
0.1331370146940314251345467
0.1175120146940314251345467
0.1051663356816857461222010
0.0951663356816857461222010
0.0869018728717683907503002
0.0799574284273239463058557
0.0740402686640103368384001
0.0689382278476838062261552
0.0644937834032393617817108
0.0605875334032393617817108
0.0571273257907826143768665
0.0540409060376961946237801
0.0512708229352031198315363
0.0487708229352031198315363
0.0465032492390579951149830
0.0444371335365786562720078
0.0425467743683366902984728
0.0408106632572255791873617
0.0392106632572255791873617
0.0377313733163971768204978
0.0363596312039143235969038
0.0350841209998326909438426
0.0338950603577399442137594
0.0327839492466288331026483
0.0317433665203020901265817
0.03076680402030209012658168
0.02984853037475571730748159
0.02898347847164153045627052
0.02816715194102928555831133
0.02739554700275768062003973
0.02666508681283803124093089
0.02597256603721476254286995
0.02531510384129102815759710
0.02469010384129102815759710
0.02409521984367056414807896
0.02352832641963428296894063
0.02298749353699501850166102
0.02247096461137518379091722
0.02197713745088135663042339
0.02150454765882086513703965
0.02105185413233829383780923
0.02061782635456051606003145
0.02020133322669712580597065
0.01980133322669712580597065
0.01941686571420193164987683
0.01904704322899483105816086
0.01869104465298913508094477
0.01834810912486842177504628
0.01801753061247172756017024
0.01769865306145131939690494
0.01739086605006319997554452
0.01709360088954001329302371
0.01680632711763538818529605
0.01652854933985761040751827
0.01625980437882562975715546
0.01599965869724394401313881
0.01574770606433893015574400
0.01550356543933893015574400
0.01526687904880638577704578
0.01503731063741979257227076
0.01481454387422086185273411
0.01459828089844231513993134
0.01438824099085987447620523
0.01418415935820681325171544
0.01398578601958352422176106
0.01379288478501562298719316
0.01360523231738567365335942
0.01342261726990576130858221
0.01324483949212798353080444
0.01307170929822216635628920
0.01290304679189732236910755
0.01273868124291638877278934
0.01257845051066194236996928
0.01242220051066194236996928
0.01226978472038606978956995
0.01212106372098095378719041
0.01197590477193174490346273
0.01183418141592267460867815
0.01169577311142440471248438
0.01156056489076458859566448
0.01142844704164317229232189
0.01129931481023821361463594
0.01117306812421372175754719
0.01104961133409026496742374
0.01092885297157366069257770
0.01081070552355853781923177
0.01069508522063334415522437
0.01058191183901270133041676
0.01047110851491297833872701
0.01036260157046853389428257
0.01025632035036012704977199 0.01015219706839427948625679 0.01005016666333357139524567))
(define (psi-x x)
(let ((y (abs x)))
(cond ((or (= x 0.0)
(= x -1.0)
(= x -2.0))
+nan.0)
((>= y 2.0)
(let* ((t (- (/ 8.0 (* y y)) 1.0))
(result-c-val (chebyshev-eval apsi-cs t)))
(if (< x 0.0)
(let ((s (sin (* pi x)))
(c (cos (* pi x))))
(if (< (abs s) (* 2.0 sqrt-double-min))
+nan.0)
(+ (log y)
(/ -0.5 x)
result-c-val
(- (/ (* pi c) s))))
(+ (log y)
(/ -0.5 x)
result-c-val))))
(else
(cond ((< x -1)
(let* ((v (+ x 2.0))
(t1 (/ 1.0 x))
(t2 (/ 1.0 (+ x 1.0)))
(t3 (/ 1.0 x))
(result-c-val
(chebyshev-eval psi-cs (- (* 2.0 v) 1.0))))
(+ (- (+ t1 t2 t3)) result-c-val)))
((< x 0.0)
(let* ((v (+ x 1.0))
(t1 (/ 1.0 x))
(t2 (/ 1.0 v))
(result-c-val
(chebyshev-eval psi-cs (- (* 2.0 v) 1.0))))
(+ (- (+ t1 t2)) result-c-val)))
((< x 1.0)
(let* ((t1 (/ 1.0 x))
(result-c-val
(chebyshev-eval psi-cs (- (* 2.0 x) 1.0))))
(+ (- t1) result-c-val)))
(else
(let ((v (- x 1)))
(chebyshev-eval psi-cs (- (* 2.0 v) 1.0)))))))))
(define (psi-n-xg0 n x)
(if (= n 0)
(psi x)
(let* ((hzeta-val (hzeta (+ n 1.0) x))
(ln-nf-val (lnfact n))
(val (* (exp ln-nf-val) hzeta-val)))
(if (even? n)
(- val)
val))))
(define (psi-int n)
(cond ((<= n 0)
+nan.0)
((<= n psi-table-nmax)
(vector-ref psi-table (inexact->exact n)))
(else
(let* ((c2 (/ -1.0 12.0))
(c3 (/ 1.0 120.0))
(c4 (/ -1.0 252.0))
(c5 (/ 1.0 240.0))
(ni2 (* (/ 1.0 n) (/ 1.0 n)))
(ser (* ni2
(+ c2 (* ni2
(+ c3 (* ni2
(+ c4 (* ni2 c5)))))))))
(+ (log n) (/ 0.5 n) ser)))))
(define (psi x)
(psi-x x))
(define (psi-1piy y)
(let ((ay (abs y)))
(cond ((> ay 1000.0)
(let* ((yi2 (/ 1.0 (* ay ay)))
(lny (log y))
(sum (* yi2 (+ (/ 1.0 12.0)
(* (/ 1.0 120.0) yi2)
(* (/ 1.0 252.0) yi2 yi2)))))
(+ lny sum)))
((> ay 10.0)
(let* ((yi2 (/ 1.0 (* ay ay)))
(lny (log y))
(sum (* yi2
(+ (/ 1.0 12.0)
(* yi2
(+ (/ 1.0 120.0)
(* yi2
(+ (/ 1.0 252.0)
(* yi2
(+ (/ 1.0 240.0)
(* yi2
(+ (/ 1.0 132.0)
(* yi2
(/ 691.0 32760.0))))))))))))))
(+ lny sum)))
((> ay 1.0)
(let* ((y2 (* ay ay))
(x (/ (- (* 2.0 ay) 11.0) 9.0))
(v (* y2
(+ (/ 1.0 (+ 1.0 y2))
(/ 0.5 (+ 4.0 y2)))))
(result-c-val
(chebyshev-eval r1py-cs x)))
(+ result-c-val (- euler) v)))
(else
(let* ((M 50)
(y2 (* y y))
(c0 0.00019603999466879846570)
(c2 3.8426659205114376860e-08)
(c4 1.0041592839497643554e-11)
(c6 2.9516743763500191289e-15)
(p (+ c0
(* y2 (+ (- c2)
(* y2 (- c4
(* y2 c6)))))))
(sum 0.0)
(v 0.0))
(do ((n 1 (+ n 1)))
((> n M) (void))
(set! sum (+ sum (/ 1.0 (* n (+ (* n n) (* y y)))))))
(set! v (* y2 (+ sum p)))
(+ (- euler) v))))))
(define (psi-1-int n)
(cond ((<= n 0)
+nan.0)
((<= n psi-1-table-nmax)
(vector-ref psi-1-table (inexact->exact n)))
(else
(let* ((c0 (/ -1.0 30.0))
(c1 (/ 1.0 42.0))
(c2 (/ -1.0 30.0))
(ni2 (* (/ 1.0 n) (/ 1.0 n)))
(ser (* ni2 ni2
(+ c0
(* ni2 (+ c1
(* ni2 c2)))))))
(/ (+ 1.0
(/ 0/5 n)
(/ 1.0 (* 6.0 n n))
ser)
n)))))
(define (psi-1 x)
(cond ((or (= x 0.0)
(= x -1.0)
(= x -2.0))
+nan.0)
((> x 0.0)
(psi-n-xg0 1 x))
((> x -5.0)
(let* ((M (inexact->exact (- (floor x))))
(fx (+ x M))
(sum 0.0))
(if (= fx 0.0)
+nan.0)
(do ((m 0 (+ m 1)))
((= m M) (void))
(set! sum (+ sum (/ 1.0 (* (+ x m) (+ x m))))))
(let ((val (psi-n-xg0 1 fx)))
(+ val sum))))
(else
(let* ((sin-px (sin (* pi x)))
(d (/ (* pi pi) (* sin-px sin-px)))
(r-val (psi-n-xg0 1 (- 1.0 x))))
(- d r-val)))))
(define (psi-n n x)
(cond ((= n 0)
(psi x))
((= n 1)
(psi-1 x))
((or (< n 0)
(<= x 0.0))
+nan.0)
(else
(let* ((hzeta-val (hzeta (+ n 1.0) x))
(ln-nf-val (lnfact n))
(val (* (exp ln-nf-val) hzeta-val)))
(if (even? n)
(- val)
val)))))