;;; PLT Scheme Science Collection ;;; random-distributions/bivariate-gaussian.ss ;;; Copyright (c) 2004 M. Douglas Williams ;;; ;;; This library is free software; you can redistribute it and/or ;;; modify it under the terms of the GNU Lesser General Public ;;; License as published by the Free Software Foundation; either ;;; version 2.1 of the License, or (at your option) any later version. ;;; ;;; This library is distributed in the hope that it will be useful, ;;; but WITHOUT ANY WARRANTY; without even the implied warranty of ;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ;;; Lesser General Public License for more details. ;;; ;;; You should have received a copy of the GNU Lesser General Public ;;; License along with this library; if not, write to the Free ;;; Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA ;;; 02111-1307 USA. ;;; ;;; ------------------------------------------------------------------- ;;; ;;; This module implements the bivariate gaussian distribution. It ;;; is based on the Random Number Distributions in the GNU Scientific ;;; Library. ;;; ;;; Version Date Description ;;; 1.0.0 09/28/04 Marked as ready for Release 1.0. Added ;;; contracts for functions. (Doug Williams) (module bivariate-gaussian mzscheme (require (lib "contract.ss")) (provide/contract (random-bivariate-gaussian (case-> (-> random-source? (>=/c 0.0) (>=/c 0.0) (real-in -1.0 1.0) (values real? real?)) (-> (>=/c 0.0) (>=/c 0.0) (real-in -1.0 1.0) (values real? real?)))) (bivariate-gaussian-pdf (-> real? real? (>=/c 0.0) (>=/c 0.0) (real-in -1.0 1.0) real?))) (require "../math.ss") (require "../random-source.ss") ;; random-bivariate-gaussian: random-source x real x real x real -> ;; real x real ;; random-bivariate-gaussian: real x real x real -> real x real ;; This function generates a pair of correlated gaussian variates, ;;; with mean zero, correlation coefficient rho, and standard ;; deviations sigma-x and sigma-y in the x and y directions. The ;; bivariate gaussian distribution probability distribution is ;; ;; p(x,y) dxdy = (1/(2 pi sigma_x sigma_y sqrt(r))) ;; exp(- (x^2 + y^2 - 2 r x y)/(2c)) dxdy ;; ;; The correlation coefficient rho should lie between 1 and -1. (define random-bivariate-gaussian (case-lambda ((r sigma-x sigma-y rho) (let ((u 0.0) (v 0.0) (r2 0.0) (scale 0.0)) (let loop () (set! u (+ -1.0 (* 2.0 (random-uniform r)))) (set! v (+ -1.0 (* 2.0 (random-uniform r)))) (set! r2 (+ (* u u) (* v v))) (if (or (> r2 1.0) (= r2 0.0)) (loop))) (set! scale (sqrt (/ (* -2.0 (log r2)) r2))) (values (* sigma-x u scale) (* sigma-y (+ (* rho u) (* (sqrt (- 1.0 (* rho rho))) v)) scale)))) ((sigma-x sigma-y rho) (random-bivariate-gaussian (current-random-source) sigma-x sigma-y rho)))) ;; Bivariate-gaussian-pdf: real x real x real x real x real -> real (define (bivariate-gaussian-pdf x y sigma-x sigma-y rho) (let ((u (/ x sigma-x)) (v (/ y sigma-y)) (c (- 1.0 (* rho rho)))) (* (/ 1.0 (* 2.0 pi sigma-x sigma-y (sqrt c))) (exp (/ (- (+ (* u u) (* -2.0 rho u v) (* v v))) (* 2.0 c)))))) )