;;; PLT Scheme Science Collection ;;; random-distributions/gaussian-tail.ss ;;; Copyright (c) 2004 M. Douglas Williams ;;; ;;; This library is free software; you can redistribute it and/or ;;; modify it under the terms of the GNU Lesser General Public ;;; License as published by the Free Software Foundation; either ;;; version 2.1 of the License, or (at your option) any later version. ;;; ;;; This library is distributed in the hope that it will be useful, ;;; but WITHOUT ANY WARRANTY; without even the implied warranty of ;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ;;; Lesser General Public License for more details. ;;; ;;; You should have received a copy of the GNU Lesser General Public ;;; License along with this library; if not, write to the Free ;;; Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA ;;; 02111-1307 USA. ;;; ;;; ------------------------------------------------------------------- ;;; ;;; This module implements the Gaussian tail distribution. It is based ;;; on the Random Number Distributions. ;;; ;;; Version Date Description ;;; 1.0.0 09/28/04 Marked as ready for Release 1.0. Added ;;; contracts for functions. (Doug Williams) (module gaussian-tail mzscheme (require (lib "contract.ss")) (provide/contract (random-gaussian-tail (case-> (-> random-source? real? real? (>=/c 0.0) real?) (-> real? real? (>=/c 0.0) real?))) (random-unit-gaussian-tail (case-> (-> random-source? real? real?) (-> real? real?))) (gaussian-tail-pdf (-> real? real? real? (>=/c 0.0) (>=/c 0.0))) (unit-gaussian-tail-pdf (-> real? real? (>=/c 0.0)))) (require "../math.ss") (require "../random-source.ss") (require "../special-functions/error.ss") (require "gaussian.ss") ;; Gaussian tail distribution ;; random-gaussian-tail: random-source x real x real x real -> real ;; random-gaussian-tail" real x real x real -> real ;; ;; Returns a gaussian random variable larger than a. This ;; implementation does one-sided upper-tailed deviates. (define random-gaussian-tail (case-lambda ((r a mu sigma) (let ((s (/ (- a mu) sigma))) (if (<= s 1.0) ;; For small s, use a direct rejection method. The limit ;; s <= 1 can be adjusted to optimize overall effeciency. (let ((x 0.0)) (let loop () (set! x (random-unit-gaussian r)) (if (< x s) (loop))) (+ mu (* x sigma))) ;; Use the "supertail" deviates from the last two steps ;; of Marsaglia's rectangle-wedge-tail method, as described ;; in Knuth, v2, 3rd ed, pp 123-128. (See also exercise 11, ;; p139, and the solution, p586.) (let ((u 0.0) (v 0.0) (x 0.0)) (let loop () (set! u (random-uniform r)) (set! v (random-uniform r)) ;; Note: v > 0.0 (set! x (sqrt (- (* s s) (* 2.0 (log v))))) (if (> (* x u) s) (loop))) (+ mu (* x sigma)))))) ((a mu sigma) (random-gaussian-tail (current-random-source) a mu sigma)))) ;; random-unit-gaussian-tail: random-source x real -> real ;; random-unit-gaussian-tail: real -> real (define random-unit-gaussian-tail (case-lambda ((r a) (if (not (random-source? r)) (raise-type-error 'random-unit-gaussian-tail "random-stream" r)) (if (not (real? a)) (raise-type-error 'random-unit-gaussian-tail "real" a)) (random-gaussian-tail r a 0.0 1.0)) ((a) (random-unit-gaussian-tail (current-random-source) a)))) ;; gaussian-tail-pdf: real x real x real x real -> real ;; ;; This function computes the probability density p(x) at x from the ;; upper tail of a Gaussian distribution with mean mu and standard ;; deviation sigma. (define (gaussian-tail-pdf x a mu sigma) (if (not (real? x)) (raise-type-error 'gaussian-tail-pdf "real" x)) (if (not (real? a)) (raise-type-error 'gaussian-tail-pdf "real" a)) (if (not (real? sigma)) (raise-type-error 'gaussian-tail-pdf "real" sigma)) (if (< x a) 0 (let ((N 0.0) (p 0.0) (u (/ (- x mu) sigma)) (f (erfc (/ (- a mu) (* (sqrt 2.0) sigma))))) (set! N (* 0.5 f)) (set! p (* (/ 1.0 (* N (sqrt (* 2.0 pi)) sigma)) (exp (/ (* (- u) u) 2.0)))) p))) ;; unit-gaussian-tail-pdf: real x real -> real (define (unit-gaussian-tail-pdf x a) (if (not (real? x)) (raise-type-error 'unit-gaussian-tail-pdf "real" x)) (if (not (real? a)) (raise-type-error 'unit-gaussian-tail-pdf "real" a)) (gaussian-tail-pdf x a 0.0 1.0)) )