#lang racket ;;; Science Collection ;;; random-distributions/binomial.rlt ;;; Copyright (c) 2004-2011 M. Douglas Williams ;;; ;;; This file is part of the Science Collection. ;;; ;;; The Science Collection is free software: you can redistribute it and/or ;;; modify it under the terms of the GNU Lesser General Public License as ;;; published by the Free Software Foundation, either version 3 of the License ;;; or (at your option) any later version. ;;; ;;; The Science Collection is distributed in the hope that it will be useful, ;;; but WITHOUT WARRANTY; without even the implied warranty of MERCHANTABILITY ;;; or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public ;;; License for more details. ;;; ;;; You should have received a copy of the GNU Lesser General Public License ;;; along with the Science Collection. If not, see ;;; <http://www.gnu.org/licenses/>. ;;; ;;; ----------------------------------------------------------------------------- ;;; ;;; This module implements the bernoulli distribution. It is based on the ;;; Random Number Distributions in the GNU Scientific Library. ;;; ;;; Version Date Description ;;; 1.0.0 09/28/04 Marked as ready for Release 1.0. Added contracts for ;;; functions. (MDW) ;;; 2.0.0 11/19/07 Added unchecked versions of functions and getting ready ;;; for PLT Scheme 4.0. (MDW) ;;; 3.0.0 06/09/08 Changes required for V4.0. (MDW) ;;; 4.0.0 06/11/10 Changed the header and restructured the code. (MDW) (require "../random-source.rkt" "../special-functions/gamma.rkt" "beta.rkt") ;;; random-binomial: random-source x real x integer -> integer ;;; random-binomial: real x integer -> integer ;;; This routine returns a random variate from a binomial distribution ;;; with n independent trials and probability p. (define random-binomial (case-lambda ((r p n) (let ((a 0) (b 0) (k 0)) (let loop () (when (> n 10) (begin (set! a (+ 1 (quotient n 2))) (set! b (+ 1 n (- a))) (let ((x (unchecked-random-beta r (exact->inexact a) (exact->inexact b)))) (if (>= x p) (begin (set! n (- a 1)) (set! p (/ p x))) (begin (set! k (+ k a)) (set! n (- b 1)) (set! p (/ (- p x) (- 1.0 x)))))) (loop)))) (do ((i 0 (+ i 1))) ((= i n) k) (let ((u (unchecked-random-uniform r))) (when (< u p) (set! k (+ k 1))))))) ((p n) (random-binomial (current-random-source) p n)))) ;;; binomial-pdf: integer x real x integer -> real ;;; This function computes the probability density p(x) at x for a ;;; binomial distribution with n independent trials and probability p. (define (binomial-pdf k p n) (if (> k n) 0.0 (let ((ln_c_nk (unchecked-lnchoose n k))) (exp (+ ln_c_nk (* k (log p)) (* (- n k) (log (- 1.0 p)))))))) (define (binomial-cdf-P k p n) (if (>= k n) 1.0 (beta-cdf-Q p (+ k 1.0) (- n k)))) (define (binomial-cdf-Q k p n) (if (>= k n) 0.0 (beta-cdf-P p (+ k 1.0) (- n k)))) (define binomial-cdf binomial-cdf-P) ;;; Module Contracts (provide (rename-out (random-binomial unchecked-random-binomial) (binomial-pdf unchecked-binomial-pdf) (binomial-cdf-P unchecked-binomial-cdf-P) (binomial-cdf-Q unchecked-binomial-cdf-Q) (binomial-cdf unchecked-binomial-cdf))) (provide/contract (random-binomial (case-> (-> random-source? (real-in 0.0 1.0) exact-integer? exact-integer?) (-> (real-in 0.0 1.0) exact-integer? exact-integer?))) (binomial-pdf (-> exact-integer? (real-in 0.0 1.0) exact-integer? (real-in 0.0 1.0))) (binomial-cdf-P (-> exact-integer? (real-in 0.0 1.0) exact-integer? (real-in 0.0 1.0))) (binomial-cdf-Q (-> exact-integer? (real-in 0.0 1.0) exact-integer? (real-in 0.0 1.0))) (binomial-cdf (-> exact-integer? (real-in 0.0 1.0) exact-integer? (real-in 0.0 1.0))) )