#lang racket ;;; Science Collection ;;; random-distributions/bivariate-gaussian.rkt ;;; Copyright (c) 2004-2010 M. Douglas Williams ;;; ;;; This file is part of the Science Collection. ;;; ;;; The Science Collection is free software: you can redistribute it and/or ;;; modify it under the terms of the GNU Lesser General Public License as ;;; published by the Free Software Foundation, either version 3 of the License ;;; or (at your option) any later version. ;;; ;;; The Science Collection is distributed in the hope that it will be useful, ;;; but WITHOUT WARRANTY; without even the implied warranty of MERCHANTABILITY ;;; or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public ;;; License for more details. ;;; ;;; You should have received a copy of the GNU Lesser General Public License ;;; along with the Science Collection. If not, see ;;; <http://www.gnu.org/licenses/>. ;;; ;;; ----------------------------------------------------------------------------- ;;; ;;; This module implements the bivariate gaussian distribution. It is based on ;;; the Random Number Distributions in the GNU Scientific Library (GSL). ;;; ;;; Version Date Description ;;; 1.0.0 09/28/04 Marked as ready for Release 1.0. Added contracts for ;;; functions. (MDW) ;;; 2.0.0 11/19/07 Added unchecked versions of functions and getting ready ;;; for PLT Scheme 4.0. (MDW) ;;; 3.0.0 06/09/08 Changes required for V4.0. (MDW) ;;; 4.0.0 06/11/10 Changed the header and restructured the code. (MDW) (require "../math.rkt" "../random-source.rkt") ;;; random-bivariate-gaussian: random-source x real x real x real -> ;;; real x real ;;; random-bivariate-gaussian: real x real x real -> real x real ;;; This function generates a pair of correlated gaussian variates, ;;;; with mean zero, correlation coefficient rho, and standard ;;; deviations sigma-x and sigma-y in the x and y directions. The ;;; bivariate gaussian distribution probability distribution is ;;; ;;; p(x,y) dxdy = (1/(2 pi sigma_x sigma_y sqrt(r))) ;;; exp(- (x^2 + y^2 - 2 r x y)/(2c)) dxdy ;;; ;;; The correlation coefficient rho should lie between 1 and -1. (define random-bivariate-gaussian (case-lambda ((r sigma-x sigma-y rho) (let ((u 0.0) (v 0.0) (r2 0.0) (scale 0.0)) (let loop () (set! u (+ -1.0 (* 2.0 (unchecked-random-uniform r)))) (set! v (+ -1.0 (* 2.0 (unchecked-random-uniform r)))) (set! r2 (+ (* u u) (* v v))) (when (or (> r2 1.0) (= r2 0.0)) (loop))) (set! scale (sqrt (/ (* -2.0 (log r2)) r2))) (values (* sigma-x u scale) (* sigma-y (+ (* rho u) (* (sqrt (- 1.0 (* rho rho))) v)) scale)))) ((sigma-x sigma-y rho) (random-bivariate-gaussian (current-random-source) sigma-x sigma-y rho)))) ;;; Bivariate-gaussian-pdf: real x real x real x real x real -> real (define (bivariate-gaussian-pdf x y sigma-x sigma-y rho) (let ((u (/ x sigma-x)) (v (/ y sigma-y)) (c (- 1.0 (* rho rho)))) (* (/ 1.0 (* 2.0 pi sigma-x sigma-y (sqrt c))) (exp (/ (- (+ (* u u) (* -2.0 rho u v) (* v v))) (* 2.0 c)))))) ;;; Module Contracts (provide (rename-out (random-bivariate-gaussian unchecked-random-bivariate-gaussian) (bivariate-gaussian-pdf unchecked-bivariate-gaussian-pdf))) (provide/contract (random-bivariate-gaussian (case-> (-> random-source? (>=/c 0.0) (>=/c 0.0) (real-in -1.0 1.0) (values real? real?)) (-> (>=/c 0.0) (>=/c 0.0) (real-in -1.0 1.0) (values real? real?)))) (bivariate-gaussian-pdf (-> real? real? (>=/c 0.0) (>=/c 0.0) (real-in -1.0 1.0) real?)))