#lang racket ;;; Science Collection ;;; random-distributions/poisson.rkt ;;; Copyright (c) 2004-2011 M. Douglas Williams ;;; ;;; This file is part of the Science Collection. ;;; ;;; The Science Collection is free software: you can redistribute it and/or ;;; modify it under the terms of the GNU Lesser General Public License as ;;; published by the Free Software Foundation, either version 3 of the License ;;; or (at your option) any later version. ;;; ;;; The Science Collection is distributed in the hope that it will be useful, ;;; but WITHOUT WARRANTY; without even the implied warranty of MERCHANTABILITY ;;; or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public ;;; License for more details. ;;; ;;; You should have received a copy of the GNU Lesser General Public License ;;; along with the Science Collection. If not, see ;;; <http://www.gnu.org/licenses/>. ;;; ;;; ------------------------------------------------------------------- ;;; ;;; This module implements the poisson distribution. It is based on ;;; the Random Number Distributions in the GNU Scientific Library. ;;; ;;; Version Date Description ;;; 1.0.0 09/28/04 Marked as ready for Release 1.0. Added ;;; contracts for functions (Doug Williams) ;;; 2.0.0 11/19/07 Added unchecked versions of functions and ;;; getting ready for PLT Scheme 4.0 (Doug Williams) ;;; 3.0.0 06/09/08 Changes required for V4.0. (Doug Williams) ;;; 4.0.0 08/16/11 Changed the header and restructured the code. (MDW) (require "../random-source.rkt" "../special-functions/gamma.rkt" "gamma.rkt" "binomial.rkt") ;;; random-poisson: random-source x real -> integer ;;; random-poisson: real -> integer ;;; This function returns a random variate from a poisson distribution ;;; with mean mu. (define random-poisson (case-lambda ((r mu) (let/ec exit (let ((k 0)) (let loop () (when (> mu 10.0) (let* ((m (inexact->exact (truncate (* mu (/ 7.0 8.0))))) (x (unchecked-random-gamma-int r m))) (if (>= x mu) (exit (+ k (unchecked-random-binomial r (/ mu x) (- m 1)))) (begin (set! k (+ k m)) (set! mu (- mu x)) (loop)))))) ;; This following method works well when mu is small (let ((emu (exp (- mu))) (prod 1.0)) (let loop () (set! prod (* prod (unchecked-random-uniform r))) (set! k (+ k 1)) (when (> prod emu) (loop))) (- k 1))))) ((mu) (random-poisson (current-random-source) mu)))) ;;; poisson-pdf: integer -> real ;;; This function computes the probability density p(x) at x for a ;;; poisson distribution with mean mu. (define (poisson-pdf k mu) (let ((lf (unchecked-lnfact k))) (exp (- (* (log mu) k) lf mu)))) (define (poisson-cdf-P k mu) (gamma-cdf-Q mu (+ k 1.0) 1.0)) (define (poisson-cdf-Q k mu) (gamma-cdf-P mu (+ k 1.0) 1.0)) (define poisson-cdf poisson-cdf-P) ;;; Module Contracts (provide (rename-out (random-poisson unchecked-random-poisson) (poisson-pdf unchecked-poisson-pdf) (poisson-cdf-P unchecked-poisson-cdf-P) (poisson-cdf-Q unchecked-poisson-cdf-Q) (poisson-cdf unchecked-poisson-cdf))) (provide/contract (random-poisson (case-> (-> random-source? (>/c 0.0) natural-number/c) (-> (>/c 0.0) natural-number/c))) (poisson-pdf (-> natural-number/c (>/c 0.0) (real-in 0.0 1.0))) (poisson-cdf-P (-> natural-number/c (>/c 0.0) (real-in 0.0 1.0))) (poisson-cdf-Q (-> natural-number/c (>/c 0.0) (real-in 0.0 1.0))) (poisson-cdf (-> natural-number/c (>/c 0.0) (real-in 0.0 1.0))))