8 Statistics
This chapter describes the statistical functions provided by the PLT Scheme Science Collection. The basic statistical functions include functions to compute the mean, variance, and standard deviation, More advanced functions allow you to calculate absolute deviation, skewness, and kurtosis, as well as the median and arbitrary percentiles. The algorithms use recurrance relations to compute average quantities in a stable way, without large intermediate values that might overflow.
The functions described in this chapter are defined in the "statistics.ss" file in the science collection and are made available using the form:
8.1 Mean, Standard Deviation, and Variance
(mean data) → real? |
data : (vectorof real?) |
Returns the arithmetic mean of "data".
data : (vectorof real?) |
mu : real? |
(variance data) → (>=/c 0.0) |
data : (vectorof real?) |
Returns the sample variance of data. If mu is not provided, it is calculated by a call to (mean data).
data : (vectorof real?) |
mu : real? |
(standard-deviation data) → (>=/c 0.0) |
data : (vectorof real?) |
Returns the standard deviation of data. The standard deviation is defined as the square root of the variance. The result is the square root of the corresponding variance function.
data : (vectorof real?) |
mu : real? |
Returns an unbiased estimate of the variance of data when the population mean mu of the underlying distribution is known a priori.
| ||||||||||||||
data : (vectorof real?) | ||||||||||||||
mu : real? |
Returns the standard deviation of data with a fixed population mean mu. The result is the square root of the variance-with-fixed-mean function.
8.2 Absolute Deviation
data : (vectorof real?) |
mu : real? |
(absolute-deviation data) → (>=/c 0.0) |
data : (vectorof real?) |
Returns the absolute devistion of data relative to the given value of the mean mu. If mu is not provided, it is calculated by a call to (mean data). This function is also useful if you want to calculate the absolute deviation to any value other than the mean, such as zero or the median.
8.3 Higher Moments (Skewness and Kurtosis)
(skew data mu sigma) → real? |
data : (vectorof real?) |
mu : real? |
sigma : (>=/c 0.0) |
(skew data) → real? |
data : (vectorof real?) |
Returns the skewness of data using the given values of the mean mu and standard deviation sigma. The skewness measures the symmetry of the tails of a distribution. If mu and sigma are not provided, they are calculated by calls to (mean data) and (standard-deviation data mu).
(kurtosis data mu sigma) → real? |
data : (vectorof real?) |
mu : real? |
sigma : (>=/c 0.0) |
(kurtosis data) → real? |
data : (vectorof real?) |
Returns the kurtosis of data using the given values of the mean mu and standard deviation sigma. The kurtosis measures how sharply peaked a distribution is relative to its width. If mu and sigma are not provided, they are calculated by calls to (mean data) and (standard-deviation data mu).
8.4 Autocorrelation
(lag-1-autocorrelation data mu sigma) → real? | |||||||||
| |||||||||
mu : real? | |||||||||
sigma : (>=/c 0.0) | |||||||||
(lag-1-autocorrelation data) → real? | |||||||||
|
Returns the lag-1 autocorrelation of data using the given value of the mean mu. If mu is not provided, it is calculated by a call to (mean data).
8.5 Covariance
(covariance data1 data2 mu1 mu2) → real? | ||||||||||
data1 : (vectorof real?) | ||||||||||
| ||||||||||
mu1 : real? | ||||||||||
mu2 : real? | ||||||||||
(covariance data1 data2) → real? | ||||||||||
data1 : (vectorof real?) | ||||||||||
|
Returns the covariance of data1 and data2, which must both be the same length, using the given values of mu1 and mu2. If the values of mu1 and mu2 are not given, they are calculated using calls to (mean data1) and (mean data2), respectively.
| ||||||||||||||||||||||||||||
data1 : (vectorof real?) | ||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||
mu1 : real? | ||||||||||||||||||||||||||||
mu2 : real? |
Returns the covariance of data1 and data2, which must both be the same length, when the population means mu1 and mu2 of the underlying distributions are known a priori.
8.6 Weighted Samples
(weighted-mean w data) → real? | ||||||||||
w : (vectorof real?) | ||||||||||
|
Returns the weighted mean of data using weights w.
w : (vectorof real?) | ||||||||||
| ||||||||||
wmu : real? | ||||||||||
(weighted-variance w data) → (>=/c 0.0) | ||||||||||
w : (vectorof real?) | ||||||||||
|
Returns the weighted variance of data using weights w and the given weighted mean wmu. If wmu is not provided, it is calculated by a call ro (weighted-mean w data).
w : (vectorof real?) | ||||||||||
| ||||||||||
wmu : real? | ||||||||||
(weighted-standard-deviation w data) → (>=/c 0.0) | ||||||||||
w : (vectorof real?) | ||||||||||
|
Returns the weighted standard deviation of data using weights w. The standard deviation is defined as the square root of the variance. The result is the square root of the corresponding weighted-variance function.
| |||||||||||||||||||||
w : (vectorof real?) | |||||||||||||||||||||
| |||||||||||||||||||||
wmu : real? |
Returns an unbiased estimate of the weighted variance of data using weights w when the weighted population mean wmu of the underlying population is known a priori.
| |||||||||||||||||||||
w : (vectorof real?) | |||||||||||||||||||||
| |||||||||||||||||||||
wmu : real? |
Returns the weighted standard deviation of data using weights w with a fixed population mean mu. The result is the square root of the weighted-variance-with-fixed-mean function.
w : (vectorof real?) | ||||||||||
| ||||||||||
wmu : real? | ||||||||||
(weighted-absolute-deviation w data) → (>=/c 0.0) | ||||||||||
w : (vectorof real?) | ||||||||||
|
Returns the weighted absolute devistion of data using weights w relative to the given value of the weighted mean wmu. If wmu is not provided, it is calculated by a call to (weighted-mean w data). This function is also useful if you want to calculate the weighted absolute deviation to any value other than the mean, such as zero or the weighted median.
w : (vectorof real?) | ||||||||||
| ||||||||||
wmu : real? | ||||||||||
wsigma : (>=/c 0.0) | ||||||||||
(weighted-skew w data) → (>=/c 0.0) | ||||||||||
w : (vectorof real?) | ||||||||||
|
Returns the weighted skewness of data using weights w using the given values of the weighted mean wmu and weighted standard deviation wsigma. The skewness measures the symmetry of the tails of a distribution. If wmu and wsigma are not provided, they are calculated by calls to (weighted-mean w data) and (weighted-standard-deviation w data wmu).
w : (vectorof real?) | ||||||||||
| ||||||||||
wmu : real? | ||||||||||
wsigma : (>=/c 0.0) | ||||||||||
(weighted-kurtosis w data) → (>=/c 0.0) | ||||||||||
w : (vectorof real?) | ||||||||||
|
Returns the weighted kurtosis of data using weights w using the given values of the weighted mean wmu and weighted standard deviation wsigma. The kurtosis measures how sharply peaked a distribution is relative to its width. If wmu and wsigma are not provided, they are calculated by calls to (weighted-mean w data) and (weighted-standard-deviation w data wmu).
8.7 Maximum and Minimum
(maximum data) → real? | |||||||||
|
Returns the maximum value in data.
(minimum data) → real? | |||||||||
|
Returns the minimum value in data.
| |||||||||
|
Returns the minimum and maximum values on data as multiple values.
|
Returns the index of the maximum value in data. When there are several equal maximum elements, the index of the first one is chosen.
|
Returns the index of the minimum value in data. When there are several equal minimum elements, the index of the first one is chosen.
| |||||||||
|
Returns the indices of the minimum and maximum values in data as multiple values. When there are several equal minimum or maximum elements, the index of the first ones are chosen.
8.8 Median and Percentiles
Thw median and percentile functions described in this section operate on sorted data. The contracts for these functions enforce this. Also, for convenience we use quantiles measured on a scale of 0 to 1 instead of percentiled, which ise a scale of 0 to 100).
(median-from-sorted-data sorted-data) → real? | ||||||||||
|
Returns the median value of sorted-data. When the dataset has an odd number of elements, the median is the value of element (n - 1)/2. When the dataset has an even number of elements, the median is the mean of the two nearest middle values, elements (n - 1)/2 and n/2.
(percentile-from-sorted-data sorted-data f) → real? | ||||||||||
| ||||||||||
f : (real-in 0.0 1.0) |
Returns a quantile value of sorted-data. The quantile is determined by the value f, a fraction between 0 and 1. For example to compute the 75th percentile, f should have the value 0.75.
The quantile is found by interpolation using the formula:
quantile = 1 - delta(x[i]) + delta(x(i + 1))
where i is floor((n - 1) × f) and delta is (n - 1) × f - 1.
8.9 Statistics Example
This example generates two vectors from a unit Gaussian distribution and a vector of conse squared weighting data. All of the vectors are of length 1,000. Thes data are used to test all of the statistics functions.
(require (planet williams/science/random-distributions/gaussian) |
(planet williams/science/statistics) |
(planet williams/science/math)) |
|
(define (naive-sort! data) |
(let loop () |
(let ((n (vector-length data)) |
(sorted? #t)) |
((= i n) data) |
(when (< (vector-ref data i) |
(vector-ref data (- i 1))) |
(let ((t (vector-ref data i))) |
(vector-set! data i (vector-ref data (- i 1))) |
(vector-set! data (- i 1) t) |
(set! sorted? #f)))) |
(unless sorted? |
(loop))))) |
|
(let ((data1 (make-vector 1000)) |
(data2 (make-vector 1000)) |
(w (make-vector 1000))) |
|
(vector-set! data1 i (random-unit-gaussian)) |
(vector-set! data2 i (random-unit-gaussian)) |
|
(vector-set! w i |
(printf "Statistics Example~n") |
(printf " mean = ~a~n" |
(mean data1)) |
(printf " variance = ~a~n" |
(variance data1)) |
(printf " standard deviation = ~a~n" |
(standard-deviation data1)) |
(printf " variance from 0.0 = ~a~n" |
(variance-with-fixed-mean data1 0.0)) |
(printf " standard deviation from 0.0 = ~a~n" |
(standard-deviation-with-fixed-mean data1 0.0)) |
(printf " absolute deviation = ~a~n" |
(absolute-deviation data1)) |
(printf " absolute deviation from 0.0 = ~a~n" |
(absolute-deviation data1 0.0)) |
(printf " skew = ~a~n" |
(skew data1)) |
(printf " kurtosis = ~a~n" |
(kurtosis data1)) |
(printf " lag-1 autocorrelation = ~a~n" |
(lag-1-autocorrelation data1)) |
(printf " covariance = ~a~n" |
(covariance data1 data2)) |
(printf " weighted mean = ~a~n" |
(weighted-mean w data1)) |
(printf " weighted variance = ~a~n" |
(weighted-variance w data1)) |
(printf " weighted standard deviation = ~a~n" |
(weighted-standard-deviation w data1)) |
(printf " weighted variance from 0.0 = ~a~n" |
(weighted-variance-with-fixed-mean w data1 0.0)) |
(printf "weighted standard deviation from 0.0 = ~a~n" |
(weighted-standard-deviation-with-fixed-mean w data1 0.0)) |
(printf " weighted absolute deviation = ~a~n" |
(weighted-absolute-deviation w data1)) |
(printf "weighted absolute deviation from 0.0 = ~a~n" |
(weighted-absolute-deviation w data1 0.0)) |
(printf " weighted skew = ~a~n" |
(weighted-skew w data1)) |
(printf " weighted kurtosis = ~a~n" |
(weighted-kurtosis w data1)) |
(printf " maximum = ~a~n" |
(maximum data1)) |
(printf " minimum = ~a~n" |
(minimum data1)) |
(printf " index of maximum value = ~a~n" |
(maximum-index data1)) |
(printf " index of minimum value = ~a~n" |
(minimum-index data1)) |
(naive-sort! data1) |
(printf " median = ~a~n" |
(median-from-sorted-data data1)) |
(printf " 10% quantile = ~a~n" |
(quantile-from-sorted-data data1 0.1)) |
(printf " 20% quantile = ~a~n" |
(quantile-from-sorted-data data1 0.2)) |
(printf " 30% quantile = ~a~n" |
(quantile-from-sorted-data data1 0.3)) |
(printf " 40% quantile = ~a~n" |
(quantile-from-sorted-data data1 0.4)) |
(printf " 50% quantile = ~a~n" |
(quantile-from-sorted-data data1 0.5)) |
(printf " 60% quantile = ~a~n" |
(quantile-from-sorted-data data1 0.6)) |
(printf " 70% quantile = ~a~n" |
(quantile-from-sorted-data data1 0.7)) |
(printf " 80% quantile = ~a~n" |
(quantile-from-sorted-data data1 0.8)) |
(printf " 90% quantile = ~a~n" |
(quantile-from-sorted-data data1 0.9))) |
Produces the following output:
Statistics Example |
mean = 0.03457693091555611 |
variance = 1.0285343857083422 |
standard deviation = 1.0141668431320077 |
variance from 0.0 = 1.028701415474174 |
standard deviation from 0.0 = 1.014249188056946 |
absolute deviation = 0.7987180852601665 |
absolute deviation from 0.0 = 0.7987898146946209 |
skew = 0.043402934671178436 |
kurtosis = 0.17722452271704014 |
lag-1 autocorrelation = 0.0029930889831972143 |
covariance = 0.005782911085590894 |
weighted mean = 0.05096139259270008 |
weighted variance = 1.0500293763787367 |
weighted standard deviation = 1.0247094107007786 |
weighted variance from 0.0 = 1.0510513958491579 |
weighted standard deviation from 0.0 = 1.0252079768755011 |
weighted absolute deviation = 0.8054378524718832 |
weighted absolute deviation from 0.0 = 0.8052440544958938 |
weighted skew = 0.046448729539282155 |
weighted kurtosis = 0.3050060704791675 |
maximum = 3.731148814104969 |
minimum = -3.327265864298485 |
index of maximum value = 502 |
index of minimum value = 476 |
median = 0.019281803306206644 |
10% quantile = -1.243869878615807 |
20% quantile = -0.7816243947573505 |
30% quantile = -0.4708703241429585 |
40% quantile = -0.2299309332835332 |
50% quantile = 0.019281803306206644 |
60% quantile = 0.30022966479982344 |
70% quantile = 0.5317978807508836 |
80% quantile = 0.832291888537874 |
90% quantile = 1.3061151234700463 |