1.4.11 Trees
Examples: |
> (alphorder 6 4) |
'() |
> (alphorder 4 6) |
't |
> (alphorder 4 4) |
't |
> (alphorder "abc" "bcd") |
't |
> (alphorder "bcd" "abc") |
'() |
> (alphorder #\a "a") |
't |
> (alphorder "a" #\a) |
'() |
Examples: |
> (eql 'yes 'yes) |
't |
> (eql 'yes 'no) |
'() |
> (eql 5 5) |
't |
> (eql #\a #\b) |
'() |
> (eql #\5 5) |
'() |
Examples: |
> (eqlablep nil) |
't |
> (eqlablep 4) |
't |
> (eqlablep #\a) |
't |
> (eqlablep 'symbol) |
't |
> (eqlablep "string") |
'() |
(equal x y) |
Example: |
> (identity 'x) |
'x |
Examples: |
> (lexorder 6 4) |
'() |
> (lexorder 4 6) |
't |
> (lexorder #\a #\b) |
't |
> (lexorder #\b #\a) |
'() |
> (lexorder 'a 'b) |
't |
> (lexorder 'b 'a) |
'() |
> (lexorder "abc" "bcd") |
't |
> (lexorder "bcd" "abc") |
'() |
> (lexorder (list 1 2) (list 3 4)) |
't |
> (lexorder (list 3 4) (list 1 2)) |
'() |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
|
Examples: | |||||
| |||||
> (caar *tree*) | |||||
'((0 . 1) 2 . 3) | |||||
> (cdar *tree*) | |||||
'((4 . 5) 6 . 7) | |||||
> (cadr *tree*) | |||||
'((8 . 9) 10 . 11) | |||||
> (cddr *tree*) | |||||
'((12 . 13) 14 . 15) | |||||
> (caaar *tree*) | |||||
'(0 . 1) | |||||
> (cdaar *tree*) | |||||
'(2 . 3) | |||||
> (cadar *tree*) | |||||
'(4 . 5) | |||||
> (cddar *tree*) | |||||
'(6 . 7) | |||||
> (caadr *tree*) | |||||
'(8 . 9) | |||||
> (cdadr *tree*) | |||||
'(10 . 11) | |||||
> (caddr *tree*) | |||||
'(12 . 13) | |||||
> (cdddr *tree*) | |||||
'(14 . 15) | |||||
> (caaaar *tree*) | |||||
0 | |||||
> (cdaaar *tree*) | |||||
1 | |||||
> (cadaar *tree*) | |||||
2 | |||||
> (cddaar *tree*) | |||||
3 | |||||
> (caadar *tree*) | |||||
4 | |||||
> (cdadar *tree*) | |||||
5 | |||||
> (caddar *tree*) | |||||
6 | |||||
> (cdddar *tree*) | |||||
7 | |||||
> (caaadr *tree*) | |||||
8 | |||||
> (cdaadr *tree*) | |||||
9 | |||||
> (cadadr *tree*) | |||||
10 | |||||
> (cddadr *tree*) | |||||
11 | |||||
> (caaddr *tree*) | |||||
12 | |||||
> (cdaddr *tree*) | |||||
13 | |||||
> (cadddr *tree*) | |||||
14 | |||||
> (cddddr *tree*) | |||||
15 |
(quote ...) |
Examples: |
> 'a |
'a |
> '(1 2 3 4) |
'(1 2 3 4) |
(quasiquote ...) |
Examples: |
> `a |
'a |
> `(1 2 3 4) |
'(1 2 3 4) |
(unquote ...) |
Example: |
> '(list ,a b c d) |
'(list ,'a b c d) |
Examples: |
> (subst 2 1 (list 1 1 1 3 1 1 1)) |
'(2 2 2 3 2 2 2) |
> (subst 'z 'a (list 'a 'b (list 'd 'a (list 'a 'e)) 'a)) |
'(z b (d z (z e)) z) |
(acl2-count v) → natp |
v : t |
The size of a cons-pair is one more than the sum of the sizes of its car and cdr. The size of an integer is its absolute value, the size of a rational number is the sum of the sizes of its numerator and denominator, and the size of a complex number is one more than the sum of the sizes of its real and imaginary parts. The size of a string is its length. The size of all other values (characters and symbols) is 0.
Examples: |
> (acl2-count 3/4) |
7 |
> (acl2-count (complex 3 4)) |
8 |
> (acl2-count "ABCD") |
4 |
> (acl2-count 'ABCD) |
0 |
> (acl2-count '(a b c d)) |
4 |